CBSE Class 10 Maths Paper Solution

Q1 The probability of an event is always greater than or equal to zero and less than or equal to one.

Here,

$$
\begin{aligned}
& \frac{3}{5}=0.6 \\
& 25 \%=\frac{25}{100}=0.25
\end{aligned}
$$

Therefore, $0.6,0.25$ and 0.3 are greater than or equal to 0 and less than or equal to 1 .

But 1.5 is greater than 1.
Thus, 1.5 cannot be the probability of an event.
The correct answer is A.
Q2. Let the coordinates of point A be (X, Y).
It is given that $P(0,4)$ is the mid-point of $A B$.

$$
\begin{aligned}
& \therefore(0,4)=\left(\frac{x-2}{2}, \frac{y+3}{2}\right) \\
& \Rightarrow \frac{x-2}{2}=0 \text { and } \frac{y+3}{2}=4 \\
& \Rightarrow x-2=0 \text { and } y+3=8 \\
& \Rightarrow x=2 \text { and } y=5
\end{aligned}
$$

Thus, the coordinates of point A are $(2,5)$.
The correct answer is A.

Q3. The point P divides the line segment joining the point $A(2,-5)$ and $(5,2)$ in the ratio 2: 3 .

$$
\begin{aligned}
\therefore P & =\left(\frac{2 \times 5+3 \times 2}{2+3}, \frac{2 \times 2+3 \times(-5)}{2+3}\right) \\
& =\left(\frac{10+6}{5}, \frac{4-15}{5}\right) \\
& =\left(\frac{16}{5}, \frac{-11}{5}\right)
\end{aligned}
$$

The point $\mathrm{P}\left(\frac{16}{5}, \frac{-11}{5}\right)$ lies in quadrant IV.
The correct answer is D.
Q4.

Let $A B$ be the tower and P be the point on the ground.
It is given that $B P=30 \mathrm{~m}, \angle \mathrm{P}=45^{\circ}$
Now, $\frac{\mathrm{AB}}{\mathrm{BP}}=\tan 45^{\circ}$
$\Rightarrow \frac{\mathrm{AB}}{30 \mathrm{~m}}=1$
$\Rightarrow A B=30 m$
Thus, the height of the tower is 30 m .
The correct answer is B .
Q5. Radius of the sphere $=\frac{18}{2} \mathrm{~cm}=9 \mathrm{~cm}$
Radius of the cylinder $=\frac{36}{2} \mathrm{~cm}=18 \mathrm{~cm}$
Let the water level in the cylinder rises by hcm .
After the sphere is completely submerged.
Volume of the sphere = Volume of liquid raised in the cylinder

$$
\begin{aligned}
& \Rightarrow \frac{4}{3} \pi(9 \mathrm{~cm})^{3}=\pi(18 \mathrm{~cm})^{2} \times \mathrm{h} \\
& \Rightarrow \mathrm{~h}=\frac{4 \times 9 \times 9 \times 9}{3 \times 18 \times 18} \mathrm{~cm} \\
& \Rightarrow \mathrm{~h}=3 \mathrm{~cm}
\end{aligned}
$$

Thus, the water level in the cylinder rises by 3 cm .
The correct answer is A.
Q6. It is given that $\angle \mathrm{AOB}=100^{\circ}$
$\triangle \mathrm{AOB}$ is isosceles because

$$
\begin{aligned}
& \mathrm{OA}=\mathrm{OB}=\text { radius } \\
& \therefore \angle \mathrm{OAB}=\angle \mathrm{OBA} \\
& \left.\angle \mathrm{AOB}+\angle \mathrm{OAB}+\angle \mathrm{OBA}=180^{\circ} \text { [Angle sum property of triangle }\right] \\
& \Rightarrow 100^{\circ}+\angle \mathrm{OAB}+\angle \mathrm{OAB}=180^{\circ} \\
& \Rightarrow 2 \angle \mathrm{OAB}=80^{\circ}
\end{aligned}
$$

$\Rightarrow \angle \mathrm{OAB}=40^{\circ}$
Now, $\angle \mathrm{OAT}=90^{\circ}$ [AT is tangent and OA is radius]
Thus, $\angle \mathrm{BAT}=\angle \mathrm{OAT}-\angle \mathrm{OAB}=90^{\circ}-40^{\circ}=50^{\circ}$
The correct answer is C .
Q 7. Since PA and PB are tangents to the circle from an external point O .
Therefore, $\mathrm{PA}=\mathrm{PB}$
$\therefore \triangle \mathrm{PAB}$ is an isosceles triangle where $\angle \mathrm{PAB}=\angle \mathrm{PBA}$
$\angle \mathrm{P}+\angle \mathrm{PAB}+\angle \mathrm{PBA}=180^{\circ}$ [angle sum property of triangle]
$\Rightarrow 60^{\circ}+2 \angle \mathrm{PAB}=180^{\circ}$
$\Rightarrow 2 \angle \mathrm{PAB}=180^{\circ}-60^{\circ}=120^{\circ}$
$\Rightarrow \angle \mathrm{PAB}=\frac{120}{2}=60^{\circ}$
It is known that the radius is perpendicular to the tangent at the point of contact.
$\therefore \angle \mathrm{OAP}=90^{\circ}$
$\Rightarrow \angle \mathrm{PAB}+\angle \mathrm{OAB}=90^{\circ}$
$\Rightarrow \angle \mathrm{OAB}=90^{\circ}-60^{\circ}=30^{\circ}$
The correct answer is A .
Q 8. The roots of the equation is $x^{2}+x-p(p+1)=0$, where p is a constant.
Its solution can be solved by using quadratic formula $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.
This can be done as

On comparing the given equation with $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$

$$
\begin{aligned}
a= & 1, b=1, c=-p(p+1) \\
\therefore x & =\frac{-1 \pm \sqrt{1^{2}-4 \times 1 \times\{-p(p+1)\}}}{2 \times 1} \\
X & =\frac{-1 \pm \sqrt{1-4\left(-p^{2}-p\right)}}{2} \\
& =\frac{-1 \pm \sqrt{(2 p+1)^{2}}}{2} \\
& =\frac{-1 \pm(2 p+1)}{2} \\
& =\frac{-1+(2 p+1)}{2} \text { or } \frac{-1-(2 p+1)}{2} \\
& =\frac{-1+(2 p+1)}{2}=\frac{2 p}{2}=p \\
& =\frac{-1-(2 p+1)}{2}=\frac{-2-2 p}{2}=-1-p=-(p+1)
\end{aligned}
$$

Therefore, the roots are given by $x=p,-(p+1)$
The correct answer is C .
Q9. We have, $a=15$ and $d=-3$
Given $a_{n}=0$
$\Rightarrow \mathrm{a}+(\mathrm{n}-1) \mathrm{d}=0$
$\Rightarrow 15+(\mathrm{n}-1)(-3)=0$
$\Rightarrow 15-3 \mathrm{n}+3=0$
$\Rightarrow-3 \mathrm{n}=-18$
$\Rightarrow \mathrm{n}=6$

The correct answer is B .
Q10. Let the radius of the required circle be rcm .
Area of required circle $=$ area of circle of radius $8 \mathrm{~cm}+$ area of circle of radius 6 cm

$$
\begin{aligned}
& \Rightarrow \pi r^{2}=\pi(8 \mathrm{~cm})^{2}+\pi(6 \mathrm{~cm})^{2} \\
& \Rightarrow r^{2}=64 \mathrm{~cm}^{2}+36 \mathrm{~cm}^{2} \\
& \Rightarrow r^{2}=100 \mathrm{~cm}^{2} \\
& \Rightarrow r=10 \mathrm{~cm}
\end{aligned}
$$

Thus, the diameter of the required circle is $2 \times 10 \mathrm{~cm}=20 \mathrm{~cm}$.
The correct answer is C .
Q11. Let E be the event of getting both heads or both tails.
The sample space for the given experiment is $\{(\mathrm{H}, \mathrm{H}),(\mathrm{H}, \mathrm{T}),(\mathrm{T}, \mathrm{H}),(\mathrm{T}, \mathrm{T})\}$
Total number of outcomes $=4$
Favorable outcomes $=\{(\mathrm{H}, \mathrm{H}),(\mathrm{T}, \mathrm{T})\}$
Favorable number of outcomes $=2$
Required probability, $P(E)=\frac{\text { Favorable number of outcomes }}{\text { Total number of outcomes }}$

$$
=\frac{2}{4}=\frac{1}{2}
$$

Q12. The given quadratic equation is $m x(5 x-6)+9=0$
$\therefore 5 m x^{2}-6 m x+9=0$

For equation (1) to have equal roots, the discriminant of the equation D should be 0 .

$$
\begin{aligned}
& \Rightarrow(-6 \mathrm{~m})^{2}-4 \times 5 \mathrm{~m} \times 9=0 \\
& \Rightarrow 36 \mathrm{~m}^{2}-180 \mathrm{~m}=0 \\
& \Rightarrow 36 \mathrm{~m}(\mathrm{~m}-5)=0 \\
& \Rightarrow \mathrm{~m}=0 \text { or } \mathrm{m}-5=0
\end{aligned}
$$

$\Rightarrow \mathrm{m}=5$ (If $\mathrm{m}=0$, then equation (1) will not be a quadratic equation)
Thus, the value of mi is 5 .
Q 13. It is given that the distance between the points $P(x, 4)$ and $Q(9,10)$ is 10 units.

Let $\mathrm{x}_{1}=\mathrm{x}, \mathrm{y}_{1}=4, \mathrm{x}_{2}=9, \mathrm{y}_{2}=10$
Applying distance formula, if is obtained.

$$
\begin{aligned}
& d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& 10=\sqrt{(9-x)^{2}+(10-4)^{2}} \\
& 10=\sqrt{81+x^{2}-18 x+36} \\
& 10=\sqrt{x^{2}-18 x+117}
\end{aligned}
$$

On squaring both sides, it is obtained.

$$
\begin{aligned}
& 100=x^{2}-18 x+117 \\
& \Rightarrow x^{2}-18 x+17=0 \\
& \Rightarrow x^{2}-17 x-x+17=0 \\
& \Rightarrow x(x-17)-1(x-17)=0
\end{aligned}
$$

$\Rightarrow(x-1)(x-17)=0$
$\Rightarrow \mathrm{x}=1,17$
Thus, the values of x are 1 and 17 .
Q14. If two cubes of sides 4 cm are joined end to end, then the length (I), breadth (b) and height (h) of the resulting cuboid are $8 \mathrm{~cm}, 4 \mathrm{~cm}$, and 4 cm , respectively.

\therefore Surface area of the resulting cuboid $=2(\mathrm{lb}+\mathrm{bh}+\mathrm{lh})$
$=2(8 \mathrm{~cm} \times 4 \mathrm{~cm}+4 \times 4 \mathrm{~cm}=8 \mathrm{~cm} \times 4 \mathrm{~cm})$
$=2 \times(32+16+32) \mathrm{cm}^{2}$
$=160 \mathrm{~cm}^{2}$
Thus, the surface area of the resulting cuboid is $160 \mathrm{~cm}^{2}$.
Q15. A point P can be marked on a line segment of length 6 cm which divides the line segment in the ratio of 3:4 as follows.
(1) Draw line segment $A B$ of length 6 cm and draw a ray $A X$ making an acute angle with line segment AB.
(2) Locate $7(3+4)$ points, $A_{1} . A_{2}, A_{3}, A_{4}$ \qquad A_{7}, on $A X$ such that $A A_{1}=A_{1} A_{2}$ $=\mathrm{A}_{2} \mathrm{~A}_{3}$ and so on.
(3) Join BA_{7}.
(4) Through the point A_{3}, draw a line parallel to $B A_{7}$ (by making an angle equal to $\angle \mathrm{AA}{ }_{7} \mathrm{~B}$ at A_{3}),
intersecting $A B$ at point P.

P is the point that divides line segment $A B$ of length 6 cm in the ratio of 3:
4.

Q16. Let O be the centre of the two concentric circles. Let PQ be the chord of larger circle touching the smaller circle at M. This can be represented diagrammatically as:

We have $P Q=48 \mathrm{~cm}$.
Radius of the smaller circle, $\mathrm{OM}=7 \mathrm{~cm}$
Let the radius of the larger circle be r, i.e. $O P=r$
Since PQ is a tangent to the inner circle, $\mathrm{OM} \perp \mathrm{PQ}$
Thus, OM bisects PQ.
$\Rightarrow \mathrm{PM}=\mathrm{MQ}=\frac{48}{2} \mathrm{~cm}=24 \mathrm{~cm}$
Now applying Pythagoras Theorem in $\triangle O P M$

$$
\begin{aligned}
& O P^{2}=O M^{2}+P M^{2} \\
& \Rightarrow O P^{2}=(7 \mathrm{~cm})^{2}+(24 \mathrm{~cm})^{2}=(49+576) \mathrm{cm}^{2}=625 \mathrm{~cm}^{2}=(25 \mathrm{~cm})^{2} \\
& \Rightarrow O P=25 \mathrm{~cm}
\end{aligned}
$$

\therefore Radius of the larger circle is 25 cm .
Thus, the value of r is 25 cm .
Q17. The given A. P. is $17,12,7,2, \ldots \ldots$.
First term, $\mathrm{a}=17$
Common difference, $\mathrm{d}=12-17=-5$
If -150 is a term of the given A.P., then for a natural number $n, a_{n}=-150$

$$
\begin{aligned}
& \Rightarrow a+(n-1) d=-150 \\
& \Rightarrow 17+(n-1)(-5)=-150 \\
& \Rightarrow(-5)(n-1)=-150-17=-167 \\
& \Rightarrow n-1=\frac{167}{5} \\
& \Rightarrow n=\frac{167}{5}+1=\frac{172}{5}=34.4
\end{aligned}
$$

Now, 34.4 is not a natural number.
Thus, -150 is not a term of the A.P, $17,12,7,2$..........
Q18. Perimeter of the shaded region = Length of APB + Length of ARC + Length CQD + Length of DSB

Now, perimeter of $\mathrm{APB}=\frac{1}{2} \times 2 \pi\left(\frac{7}{2}\right) \mathrm{cm}=\frac{22}{7} \times \frac{7}{2} \mathrm{~cm}=11 \mathrm{~cm}$

$$
\begin{aligned}
& \text { Perimeter of } \mathrm{ARC}=\frac{1}{2} \times 2 \pi(7 \mathrm{~cm})=\frac{22}{7} \times 7 \mathrm{~cm}=22 \mathrm{~cm} \\
& \text { Perimeter of } \mathrm{CQD}=\frac{1}{2} \times 2 \pi\left(\frac{7}{2} \mathrm{~cm}\right)=\frac{22}{7} \times \frac{7}{2} \mathrm{~cm}=11 \mathrm{~cm} \\
& \text { Perimeter of } D S B=\frac{1}{2} \times 2 \pi(7 \mathrm{~cm})=\frac{22}{7} \times 7 \mathrm{~cm}=22 \mathrm{~cm}
\end{aligned}
$$

Thus, perimeter of the shaded region $=11 \mathrm{~cm}+22 \mathrm{~cm}+11 \mathrm{~cm}=66 \mathrm{~cm}$ OR

Let the radius of the circle be r.
It is given that perimeter of the circle is 44 cm .

$$
\begin{aligned}
& \therefore 2 \pi r=44 \mathrm{~cm} \\
& \Rightarrow 2 \times \frac{22}{7} \times r=44 \mathrm{~cm} \\
& \Rightarrow r=7 \mathrm{~cm}
\end{aligned}
$$

Area of a quadrant of a circle

$$
\begin{aligned}
= & \frac{1}{4} \times \pi r^{2}=\frac{1}{4} \times \frac{22}{7} \times(7 \mathrm{~cm})^{2} \\
& =\frac{1}{4} \times \frac{22}{7} \times 49 \mathrm{~cm}^{2}=38.5 \mathrm{~cm}^{2}
\end{aligned}
$$

Thus, the area of a quadrant of the given circle is $38.5 \mathrm{~cm}^{2}$.
Q19. Let the two given vertices be $A(3,0)$ and $B(6,0)$.
Let the coordinates of the third vertex be $C(x, y)$.
It is given that the triangle $A B C$ is equilateral.

Therefore, $A B=B C=C A$ (Sides of an equilateral triangle)

$$
\begin{aligned}
& \Rightarrow \sqrt{(6-3)^{2}+(0-0)^{2}}=\sqrt{(x-6)^{2}+(y-0)^{2}}=\sqrt{(x-3)^{2}+(y-0)^{2}} \\
& \Rightarrow 9=(x-6)^{2}+y^{2}=(x-3)^{2}+y^{2} \\
& \therefore(x-6)^{2}+y^{2}=(x-3)^{2}+y^{2} \\
& \Rightarrow-12 x+36=-6 x+9 \\
& \Rightarrow-6 x=-27 \\
& \Rightarrow x=\frac{9}{2} \\
& \text { Now, } y^{2}+(x-6)^{2}=9 \\
& \Rightarrow y^{2}+\left(\frac{9}{2}-6\right)^{2}=9 \quad\left(\therefore x=\frac{9}{2}\right) \\
& \Rightarrow y^{2}=9-\frac{9}{4} \\
& \Rightarrow y^{2}=\frac{27}{4} \\
& \Rightarrow y= \pm \sqrt{\frac{27}{4}= \pm \frac{3 \sqrt{3}}{2}}
\end{aligned}
$$

Thus, the coordinates' of the third vertex are $\left(\frac{9}{2}, \frac{3 \sqrt{3}}{2}\right)$ or $\left(\frac{9}{2}-\frac{3 \sqrt{3}}{2}\right)$ OR

Let $Q(7, k)$ divide the line segment joining $P(5,4)$ and $(9,-2)$ in the ratio $\lambda: 1$

$$
\therefore \text { Coordinates of the Point } Q=\left(\frac{9 \lambda+5}{\lambda+1}, \frac{-2 \lambda+4}{\lambda+1}\right)
$$

$$
\therefore \frac{9 \lambda+5}{\lambda+1}=7 \text { and } \mathrm{k}=\frac{-2 \lambda+4}{\lambda+1}
$$

$$
\begin{aligned}
& \Rightarrow 9 \lambda+5=7 \lambda+7 \\
& \Rightarrow 2 \lambda=2 \\
& \Rightarrow \lambda=1 \\
& \text { Now, } \mathrm{k}=\frac{-2 \lambda+4}{\lambda+1} \\
& \Rightarrow \mathrm{k}=\frac{-2 \times 1+4}{1+1} \\
& \Rightarrow \mathrm{k}=\frac{-2+4}{2} \\
& \Rightarrow \mathrm{k}=1
\end{aligned}
$$

Thus, the value of k is 1 .
Q20.
The given information can be diagrammatically represented as,

Here, $A B$ is the tower of height 100 m . The Points C and D are the position of the two cars.

In right $\triangle A C B$,

$$
\begin{aligned}
& \tan 45^{\circ}=\frac{A B}{B C} \\
& \Rightarrow 1=\frac{100 \mathrm{~m}}{B C}
\end{aligned}
$$

$$
\Rightarrow B C=100 \mathrm{~m}
$$

In right $\triangle A B D$

$$
\begin{aligned}
& \tan 30^{\circ}=\frac{\mathrm{AB}}{\mathrm{BD}} \\
& \Rightarrow \frac{1}{\sqrt{3}}=\frac{100 \mathrm{~m}}{\mathrm{BD}} \\
& \Rightarrow \mathrm{BD}=100 \sqrt{3} \mathrm{~m}
\end{aligned}
$$

Distance between the two cars $=C D$

$$
\begin{aligned}
& =B C+C D \\
& =100 \mathrm{~m}+100 \sqrt{3} \mathrm{~m} \\
& =100 \mathrm{~m}+100 \times 1.73 \mathrm{~m} \\
& =100 \mathrm{~m}+173 \mathrm{~m} \\
& =273 \mathrm{~m}
\end{aligned}
$$

Thus, the distance between two cars is 273 m .
Q21 The sample space of the given experiment is:

$$
\begin{aligned}
& \mathrm{S}=\left\{\begin{array}{lllll}
(1,1), & (1,2), & (1,3), & (1,4), & (1,5), \\
(2,1), & (2,2), & (2,3), & (2,4), & (2,5), \\
(3,1), & (3,2), & (3,3), & (3,4), & (3,5), \\
(4,1), & (4,2), & (4,3), & (4,4), & (4,5), \\
(4,6) \\
(5,1), & (5,2), & (5,3), & (5,4), & (5,5), \\
(6,1), & (6,2), & (6,3), & (6,4), & (6,5), \\
(6,6)
\end{array}\right\} \\
& \therefore \mathrm{n}(\mathrm{~S})=36
\end{aligned}
$$

Let E be the event that the product of numbers obtained on the upper face is a perfect square
$\therefore \mathrm{E}=\{(1,1),(1,4),(2,2),(3,3),(4,1),(4,4),(5,5),(6,6)\}$
$\therefore \mathrm{n}(\mathrm{E})=8$

$$
\mathrm{P}(\mathrm{E})=\frac{n(E)}{n(S)}=\frac{8}{36}=\frac{2}{9}
$$

OR

The set of possible outcomes of the given experiment are:

$$
S=\{H H H, H H T, H T H, H T T, T H H, T H T, T T H, ~ T T T\}
$$

Let E be the event of getting three heads or three tails.

$$
\therefore \mathrm{E}=\{\mathrm{HHH}, \mathrm{TTT}\}
$$

\therefore Probability of winning $=P(E)$

$$
=\frac{n(E)}{n(S)}=\frac{2}{8}=\frac{1}{4}
$$

\therefore Probability of losing $=P\left(E^{\prime}\right)$
$=1-P(E)$
$=1-\frac{1}{4}=\frac{3}{4}$
Therefore, the probability that Hanif will lose the game is $\frac{3}{4}$.
Q22.
Height of the bucket (which is in the shape of a frustum of a cone), $\mathrm{h}=15$ cm

Radius of one end of bucket, $R=14 \mathrm{~cm}$

Radius of the other end of the bucket is r.
It is given that the volume of the bucket is $5390 \mathrm{~cm}^{3}$.

$$
\begin{aligned}
& \Rightarrow \frac{1}{3} \pi\left(R^{2}+r^{2}+R r\right) h=5390 \\
& \Rightarrow \frac{1}{3} \times \frac{22}{7} \times\left[14^{2}+r^{2}+14 r\right\} \times 5390 \\
& \Rightarrow 196+r^{2}+14 r=\frac{5390 \times 7}{22 \times 5}=343 \\
& \Rightarrow r^{2}+14 r+196-343=0 \\
& \Rightarrow r^{2}+14 r-147=0 \\
& \Rightarrow r^{2}+21 r-7 r-147=0 \\
& \Rightarrow r(r+21)-7(r+21)=0 \\
& \Rightarrow(r+21)(r-7)=0 \\
& \Rightarrow r-7=0 \text { or } r+21=0 \\
& \Rightarrow r=7 \text { or } r=-21
\end{aligned}
$$

Since the radius cannot be a negative number, $r=7 \mathrm{~cm}$ Thus, the value of r is 7 cm .

Q23. Join O with A, O with B, O with C, O with E, and O with F.

We have, $O D=O F=O E=2 \mathrm{~cm}$ (radii)
$B D=4 \mathrm{~cm}$ and $D C=3 \mathrm{~cm}$
$\therefore B C=B D+D C=4 \mathrm{~cm}+3 \mathrm{~cm}=7 \mathrm{~cm}$
Now, $B F=B D=4 \mathrm{~cm}$ [Tangents from the same point]
$C E=D C=3 \mathrm{~cm}$
Let $A F=A E=x \mathrm{~cm}$
Then, $A B=A F+B F=(4+x) \mathrm{cm}$ and $A C=A E+C E=(3+x) \mathrm{cm}$

It is given that

$$
\begin{aligned}
& \operatorname{ar}(\triangle \mathrm{OBC})+\operatorname{ar}(\triangle \mathrm{OAB})+\operatorname{ar}(\triangle \mathrm{OAC})=\operatorname{ar}(\triangle \mathrm{ABC}) \\
& \Rightarrow \frac{1}{2} \times \mathrm{BC} \times \mathrm{OD}+\frac{1}{2} \times \mathrm{AB} \times \mathrm{OF}+\frac{1}{2} \times \mathrm{AC} \times \mathrm{OE}=21 \\
& \Rightarrow \frac{1}{2} \times 7 \times 2+\frac{1}{2} \times(4+\mathrm{x}) \times 2+\frac{1}{2} \times(3+\mathrm{x}) \times 2=21 \\
& \Rightarrow \frac{1}{2} \times 2(7+4+\mathrm{x}+3+\mathrm{x})=21 \\
& \Rightarrow 14+2 \mathrm{x}=21 \\
& \quad \Rightarrow 2 \mathrm{x}=7 \\
& \quad \Rightarrow \mathrm{x}=3.5
\end{aligned}
$$

Thus, $\mathrm{AB}=(4+3.5) \mathrm{cm}=7.5 \mathrm{~cm}$ and $\mathrm{AC}=(3+3.5) \mathrm{cm}=6.5 \mathrm{~cm}$.
Q24. The given $A P$ is $-6,-2,2, \ldots . ., 58$
Here, first term $a=-6$ and common difference $d=-2-(-6)=-2+6=4$
Last term, l=58
$\Rightarrow \mathrm{a}+(\mathrm{n}-1) \mathrm{d}=58$

$$
\begin{aligned}
& \Rightarrow-6+(\mathrm{n}-1) \times 4=58 \\
& \Rightarrow(\mathrm{n}-1) \times 4=64 \\
& \Rightarrow(\mathrm{n}-1)=16 \\
& \Rightarrow \mathrm{n}=17
\end{aligned}
$$

Middle term of the A.P. $\left(\frac{n+1}{2}\right)^{\text {th }}$ term $=\left(\frac{17+1}{2}\right)^{\text {th }}$ term $=9^{\text {th }}$ term

$$
a_{9}=a+(9-1) d=-6+8 \times 4=-6+32=26
$$

Thus, the middle term of the given A.P. is 26.
OR

Let the first term of the given AP be 'a' and the common difference be ' d '.
We have $\mathrm{a}_{4}=18$
$\Rightarrow a+(4-1) d=18$
$\Rightarrow a+3 d=18$
Also, it is given that

$$
\begin{aligned}
& a_{15}-a_{9}=30 \\
& \Rightarrow a+(15-1) d-\{a+(9-1) d\}=30 \\
& \Rightarrow a+14 d-(a+8 d)=30 \\
& \Rightarrow 6 d=30 \\
& \Rightarrow d=5
\end{aligned}
$$

Putting the value of d in (i):
$a+3 \times 5=18$

$$
\begin{aligned}
& \Rightarrow a+15=18 \\
& \Rightarrow a=18-15 \\
& \Rightarrow a=3
\end{aligned}
$$

Therefore, the first term and the common difference of the AP are 3 and 5 respectively

Thus, the A.P. is $3,3+5,3+(2 \times 5), 3+(3 \times 5) \ldots$.
That is $3,8,13,18$...
Q25. The given quadratic equation is $2 \sqrt{3} x^{2}-5 x+\sqrt{3}=0$
Comparing with the standard from $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$
The value of a, b and c are

$$
\begin{aligned}
& a=2 \sqrt{3}, b=-5, c
\end{aligned}=\sqrt{3} .
$$

$\therefore \mathrm{x}=\frac{-b \pm \sqrt{ } D}{2 a}$
$=\frac{5 \pm 1}{2 \times 2 \sqrt{3}}$
$=\frac{6}{4 \sqrt{3}}$ or $\frac{4}{4 \sqrt{3}}$
$=\frac{3}{2 \sqrt{3}}$ or $\frac{1}{\sqrt{3}}$
$=\frac{\sqrt{3}}{2}$ or $\frac{\sqrt{3}}{3}$

Therefore, the roots of the given quadratic equation are $\frac{\sqrt{3}}{2}$ and $\frac{\sqrt{3}}{3}$.
Q26. Radius of the given circle $=35 \mathrm{~cm}$
Area of the minor segment $=$ Area of sector $O A B-$ area of $\triangle A O B$
Area of section $\mathrm{OAB}=\frac{\theta}{360^{\circ}} \times \pi \mathrm{r}^{2}$

$$
\begin{aligned}
& =\frac{90^{\circ}}{360^{\circ}} \times \frac{22}{7} \times(35 \mathrm{~cm})^{2} \\
& =\frac{1}{4} \times \frac{22}{7} \times 1225 \mathrm{~cm}^{2} \\
& =962.5 \mathrm{~cm}^{2}
\end{aligned}
$$

Area of $\triangle A O B=\frac{1}{2} \times O A \times O B$

$$
=\frac{1}{2} \times 35 \mathrm{~cm} \times 35 \mathrm{~cm}^{2}
$$

$$
=612.5 \mathrm{~cm}^{2}
$$

\therefore Area of the minor segment $=962.5 \mathrm{~cm}^{2}-612.5 \mathrm{~cm}^{2}=350 \mathrm{~cm}^{2}$
Area of the major segment = Area of the circle $\boldsymbol{-}$ area of the minor segment
Area of the circle $=\pi r^{2}=\frac{22}{7} \times(35 \mathrm{~cm})^{2}=3850 \mathrm{~cm}^{2}$
Thus, the area of the major segment APB $=3850 \mathrm{~cm}^{2}-350 \mathrm{~cm}^{2}=3500 \mathrm{~cm}^{2}$
Q27. A $\triangle P Q^{\prime} R^{\prime}$ whose sides are $\frac{3}{4}$ of the corresponding sides of $\triangle P Q R$ can be drawn as follows.

Step1. Draw a $\triangle P Q R$ with side $P Q=5 \mathrm{~cm}, \mathrm{PR}=6 \mathrm{~cm}$ and $\angle \mathrm{P}=120^{\circ}$
Step2. Draw a ray PX making an acute angle with PR on the opposite side of vertex Q .

Step3. Locate 4 points (as 4 is greater in 3 and 4), $P_{1}, P_{2}, P_{3}, P_{4}$, on line segment PX.

Step4. Join $P_{4} R$ and draw a line through P_{3}, parallel to $P_{4} R$ intersecting $P R$ at R^{\prime}.

Step5. Draw a line through R^{\prime} parallel to $Q R$ intersecting $P Q$ at $Q^{\prime} . \Delta P Q^{\prime} R^{\prime}$ is the required triangle.

Q28. Let the coordinates of the point on y-axis be $P(0, y)$.
Let the given points be $A(-5,-2)$ and $B(3,2)$.
It is given that $P A=P B$

$$
\begin{aligned}
& \Rightarrow \sqrt{\left.(0-(-5))^{2}+y-(-2)\right)^{2}}=\sqrt{(0-3)^{2}+y-2^{2}} \\
& \Rightarrow 25+(y+2)^{2}=9+(y-2)^{2} \\
& \Rightarrow 25+y^{2}+4 y+4=9+y^{2}-4 y+4 \\
& \Rightarrow 8 y=-16 \\
& \Rightarrow y=-2
\end{aligned}
$$

Thus, the coordinates of the required point is $(0,-2)$

Q29. The remaining solid, after removing the conical cavity, can be drawn as,

Height of the cylinder, $\mathrm{h}_{1}=20 \mathrm{~cm}$
\therefore Radius of the cylinder, $r=\frac{12 \mathrm{~cm}}{2}=6 \mathrm{~cm}$
Height of the cone, $\mathrm{h}_{2}=8 \mathrm{~cm}$

Radius of the cone, $r=6 \mathrm{~cm}$
Total surface area of the remaining solid
\Rightarrow Areas of the top face of the cylinder + curved surface area of the cylinder + curved surface area of the cone

Slant height of the cone, $I=\sqrt{(8 \mathrm{~cm})^{2}+(6 \mathrm{~cm})^{2}}$

$$
\begin{aligned}
& =\sqrt{64 \mathrm{~cm}^{2}+36 \mathrm{~cm}^{2}} \\
& =\sqrt{100} \mathrm{~cm} \\
& =10 \mathrm{~cm}
\end{aligned}
$$

Curved surface are of the cone $=\pi r l=\frac{22}{7} \times 6 \mathrm{~cm} \times 10 \mathrm{~cm}=\frac{1320}{7} \mathrm{~cm}^{2}$
Curved surface are of the cylinder $=2 \pi r h=2 \times \frac{22}{7} \times 6 \mathrm{~cm} \times 10 \mathrm{~cm}=\frac{5280}{7} \mathrm{~cm}^{2}$

Area of the top face of the cylinder $=\pi r^{2}=\frac{22}{7} \times(6 \mathrm{~cm})^{2}=\frac{792}{7} \mathrm{~cm}^{2}$
\therefore Total surface area of the remaining solid $=\left(\frac{1320}{7}+\frac{5280}{7}+\frac{792}{7}\right) \mathrm{cm}^{2}$

$$
\begin{aligned}
& =\frac{7392}{7} \mathrm{~cm}^{2} \\
& =1056 \mathrm{~cm}^{2}
\end{aligned}
$$

Q30. Length of the rectangular piece of paper $=28 \mathrm{~cm}$
Breadth of the rectangular piece of paper $=14 \mathrm{~cm}$
Area of the rectangular paper, $A_{1}=(28.14) \mathrm{cm}^{2}=392 \mathrm{~cm}^{2}$
Radius (r) of the removed semicircular portion

$$
\begin{aligned}
& =\frac{1}{2} \pi r^{2} \\
& =\frac{1}{2} \times \frac{22}{7} \times(7)^{2} \mathrm{~cm}^{2} \\
& =\frac{11}{7} \times 49 \mathrm{~cm}^{2} \\
& =77 \mathrm{~cm}^{2}
\end{aligned}
$$

Radius R of the semicircular portion added $=\frac{28}{2} \mathrm{~cm}=14 \mathrm{~cm}$
Area $\left(\mathrm{A}_{3}\right)$ of the added semicircular portion
$=\frac{1}{2} \pi R^{2}$
$=\frac{1}{2} \times \frac{22}{7} \times(14)^{2} \mathrm{~cm}^{2}$
$=308 \mathrm{~cm}^{2}$
\therefore Area of the shaded region $=A_{1}-A_{2}+A_{3}=(392-77+308) \mathrm{cm}^{2}=623 \mathrm{~cm}^{2}$
Q31 The given situation can be represented as:

Here, $A B$ is the building of height 15 m and $C E$ is the cable tower of height h .
$C D=A B=15 m, D E=C E-C D=(h-15) m$
In right $\triangle \mathrm{ADE}$,
$\tan 60^{\circ}=\frac{\mathrm{DE}}{\mathrm{AD}}$
$\Rightarrow \sqrt{3}=\frac{\mathrm{h}-15}{\mathrm{AD}}$
$\Rightarrow A D=\frac{\mathrm{h}-15}{\sqrt{3}}$
In right $\triangle A C D$,
$\tan 30^{\circ}=\frac{\mathrm{CD}}{\mathrm{AD}}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{15 \mathrm{~m}}{\mathrm{AD}}$
$\Rightarrow A D=15 \sqrt{3} m$ \qquad

From (1) and (2)
$\Rightarrow \frac{\mathrm{h}-15}{\sqrt{3}}=15 \sqrt{3}$
$\Rightarrow \mathrm{h}-15=45$
$\Rightarrow \mathrm{h}=60$

Thus, the height of the cable tower is 60 m .
Q32. Let the speed of the stream be $x \mathrm{~km} / \mathrm{h}$
Speed of the boat while going upstream $=(20-x) \mathrm{km} / \mathrm{h}$
Speed of the boat while going downstream $=(20+x) \mathrm{km} / \mathrm{h}$
Time taken for the upstream journey $=\frac{48 \mathrm{~km}}{(20-x) \mathrm{km} / \mathrm{h}}=\frac{48}{20-x} \mathrm{~h}$
Time taken for the downstream journey $=\frac{48 \mathrm{~km}}{(20+x) \mathrm{km} / \mathrm{h}}=\frac{48}{20+\mathrm{x}} \mathrm{h}$
It is given that,
Time taken for the upstream Journey = Time taken for the downstream journey + 1 hour
$\Rightarrow \frac{48}{20-x}-\frac{48}{20+x}=1$
$\Rightarrow \frac{960+48 x-960+48 x}{(20-x)(20+x)}=1$
$\Rightarrow \frac{96 x}{400-x^{2}}=1$
$\Rightarrow 400-x^{2}=96 x$
$\Rightarrow x^{2}+96 x-400=0$
$\Rightarrow x^{2}+100 x-4 x-400=0$
$\Rightarrow \mathrm{x}(\mathrm{x}+100)-4(\mathrm{x}+100)=0$
$\Rightarrow(x+100)(x-4)=0$
$\Rightarrow \mathrm{x}+100=0$ or $\mathrm{x}-4=0$
$\Rightarrow x=-100 \mathrm{pr} \mathrm{x}=1$
$\therefore x=4 \quad$ [Since speed cannot be negative]
Thus, the speed of the stream is $4 \mathrm{~km} / \mathrm{h}$
OR
$\frac{1}{x+4}-\frac{1}{x-7}=\frac{11}{30}$
$\Rightarrow \frac{(x-7)-(x+4)}{(x+4)(x-7)}=\frac{11}{30}$
$\Rightarrow \frac{-11}{x^{2}-3 x-28}=\frac{11}{30}$
$\Rightarrow x^{2}-3 x-28=-30$
$\Rightarrow \mathrm{x}^{2}-3 \mathrm{x}+2=0$
$\Rightarrow x^{2}-2 x-x+2=0$
$\Rightarrow x(x-2)-1(x-2)=0$
$\Rightarrow(x-1)(x-2)=0$
$\Rightarrow \mathrm{x}-1=0$ or $\mathrm{x}-2=0$
$\Rightarrow \mathrm{x}=1$ or $\mathrm{x}=2$
Hence, the roots of the given equation are 1 and 2.

Q33.

Let O be the centre of a circle.

Let PA and PB are two tangents drawn from a point P, lying outside the circle . Join OA, OB, and OP.

We have to prove that $\mathrm{PA}=\mathrm{PB}$
In $\triangle \mathrm{OAP}$ and $\triangle \mathrm{OPB}$,
$\angle \mathrm{OAP}=\angle \mathrm{OPB}\left(\right.$ Each equal to $\left.90^{\circ}\right)$
(Since we know that a tangent at any point of a circle is perpendicular to the radius through the point of contact and hence, $\mathrm{OA} \perp \mathrm{PA}$ and $\mathrm{OB} \perp \mathrm{PB}$)
$\mathrm{OA}=\mathrm{OB}$ (Radii of the circle)
$\mathrm{OP}=\mathrm{PO}$ (Common side)
Therefore, by RHS congruency criterion,
$\triangle \mathrm{OPA} \cong \triangle \mathrm{OPB}$
\therefore By CPCT,
$P A=P B$
Thus, the lengths of the two tangents drawn from an external point to a circle are equal.

Q34. Let a and d respectively be the first term and the common difference of the given A. P

The sum of first four terms

$$
\begin{align*}
& \mathrm{S}_{4}=40 \\
& \Rightarrow \frac{4}{2}\{2 \mathrm{a}+(4-1) \mathrm{d}\}=40 \\
& \Rightarrow 2 \mathrm{a}+3 \mathrm{~d}=20 \tag{1}
\end{align*}
$$

\qquad

The sum of first 14 terms

$$
\begin{align*}
& \mathrm{S}_{14}=280 \\
& \Rightarrow \frac{14}{2}\{2 \mathrm{a}+(14-1) \mathrm{d}\}=280 \\
& \Rightarrow 2 \mathrm{a}+13 \mathrm{~d}=40 \tag{2}
\end{align*}
$$

Subtracting equation (1) from equation (2)

$$
\begin{aligned}
& (2 a+13 d)-(2 a+3 d)=40-20 \\
& \Rightarrow 10 d=20 \\
& \Rightarrow d=2
\end{aligned}
$$

Substituting $d=2$ in equation (1),
$2 a+3 \times 2=20$
$\Rightarrow 2 \mathrm{a}=20-6=14$
$\Rightarrow a \frac{14}{2}=7$
\therefore Sum of first n terms, $\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}\{2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}\}$

$$
=\frac{n}{2}\{2 \times 7+(n-1) \times 2\}
$$

$$
\begin{aligned}
& =\frac{n}{2}\{14+2 n-2\} \\
= & \frac{n}{2}(2 n+12) \\
= & \frac{n}{2} \times 2(n+6) \\
= & n(n+6) \\
= & n^{2}+6 n
\end{aligned}
$$

OR
The first 30 integers divisible by 6 are $6,12,18 \ldots . . .180$
Sum of first 30 integers
$=6+12+18+\ldots .+180$
$=\frac{30}{2}(6+180)$
$\left[S_{n=\frac{n}{2}(a+1)}\right]$
$=15 \times 186$
$=2790$

