# CBSE Class 10 Maths Paper Solution 

## CLASS X MATHS - 2012

## General Instructions:

1. All questions are compulsory.
2. The question paper consists of 34 questions divided into four sections $A, B, C$ and $D$.
3. Section $A$ contains 10 questions of 1 mark each, which are multiple choices type Questions, Section B contains 8 questions of 2 marks each, Section C contains 10 questions of 3 marks each, Section D contains 6 questions of 4 marks each.
4. There is no overall choice in the paper. However, internal choice is provided in one question of 2 marks, 3 questions of 3 marks each and two questions of 4 marks each.
5. Use of calculators is not permitted.

Q1


Let $A B$ be the tower and $B C$ be the length of the shadow of the tower.
Here, $\theta$ is the angle of elevation of the sun.
Given, length of shadow of tower $=\sqrt{3} \quad x$ Height of the tower.
$B C=\sqrt{3} A B \ldots$. (1)
In right $\triangle \mathrm{ABC}$,
$\tan \theta=\frac{\mathrm{AB}}{\mathrm{BC}}\left[\tan \theta=\frac{\text { Opposite sid } \mathrm{e}}{\text { Adjacent side }}\right]$
$\tan \theta=\frac{\mathrm{AB}}{\sqrt{3} \mathrm{AB}} \quad[$ Using (1)]
$\Rightarrow \tan \theta=\frac{1}{\sqrt{3}}$
$\Rightarrow \tan \theta=\tan 30^{\circ} \quad\left[\therefore \tan 30^{\circ}=\frac{1}{\sqrt{3}}\right]$
$\Rightarrow \theta=30^{\circ}$
Thus, the angle of elevation of the sun is $30^{\circ}$.
Hence, the correct answer is B.
Q2
Let $r_{1}$ and $r_{2}$ be the radii of the two given circles.
Given, $2 r_{1}=10 \mathrm{~cm}$
$\therefore r_{1}=5 \mathrm{~cm}$
Also, $2 \mathrm{r}_{2}=24 \mathrm{~cm}$
$\therefore \mathrm{r}_{2}=12 \mathrm{~cm}$
Let $R$ be the radius of the larger circle.
Given, area of larger circle = Sum of areas of two given circles
$\therefore \pi \mathrm{R} 2=\pi \mathrm{r}_{1}^{2}+\pi \mathrm{r}_{2}^{2}$
$\Rightarrow R^{2}=(5 \mathrm{~cm})^{2}+(12 \mathrm{~cm})^{2}$
$\Rightarrow R^{2}=25 \mathrm{~cm}^{2}+144 \mathrm{~cm}^{2}$
$\Rightarrow \mathrm{R}^{2}=169 \mathrm{~cm}^{2}$
$\Rightarrow R=\sqrt{169} \mathrm{~cm}$
$\Rightarrow R=13 \mathrm{~cm}$
Thus, the diameter of the larger circle is $(2 \times 13) \mathrm{cm}=26 \mathrm{~cm}$
Hence, the correct answer is B.
Q3
Let the radius and height of the original cylinder be r and h respectively.
$\therefore$ Volume of the original cylinder $=\pi r^{2} h$
According to the question, radius of the new cylinder is halved keeping the height same.
$\Rightarrow$ Radius of the new cylinder $=\frac{r}{2}$
Also, height of the new cylinder $=h$
$\therefore$ Volume of the new cylinder $=\pi\left(\frac{\mathrm{r}}{2}\right)^{2} \mathrm{~h}=\frac{\pi \mathrm{r}^{2} \mathrm{~h}}{4}$
$\therefore \frac{\text { Volume of the new cylinder }}{\text { Volume of the original cylinder }}=\left(\pi r^{2} h / 4\right) /\left(\pi r^{2} h\right)=(1 / 4)=1: 4$
Hence, the correct answer is C.

Q4
Elementary events associated with random experiment of the given two dice are:
$(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)$
$(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)$
$(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)$
$(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)$
$(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)$
$(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)$
$\therefore$ Total number of outcomes $=36$
Let $A$ be the event of getting same number on both dice.
Elementary events favourable to event $A$ are $(1,1),(2,2)(3,3),(4,4),(5,5)$ and $(6,6)$.
$\Rightarrow$ Favourable number of outcomes $=6$
$\therefore \mathrm{P}(\mathrm{A})=\frac{6}{36}=\frac{1}{6}$
So, required probability is $\frac{1}{6}$

Hence, the correct answer is $C$.

Q5

Let $P(x, y)$ divides line segment joining $A(1,3)$ and $B(4,6)$ in the ratio $2: 1$.

We know that , the coordinates of a point $(x, y)$ dividing the line segment joining the points
$\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in the ratio $m_{1}: m_{2}$ are given by
$\mathrm{x}=\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}$ and $\mathrm{y}=\frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}$
$\therefore$ Here $x=\frac{2(4)+1(1)}{2+1}$ and $y=\frac{2(6)+1(3)}{2+1}$
$\Rightarrow \mathrm{x}=\frac{9}{3}$ and $\mathrm{y}=\frac{15}{3}$
$\Rightarrow x=3$ and $y=5$

Thus, $(3,5)$ divides the line segment $A B$ in the ratio 2: 1

Hence, the correct answer is B.

Q6

Let $A B$ be the diameter and $O$ be the centre of the circle.

We are given co-ordinates of one end point of circle and co-ordinates of its centre.
So, co-ordinates of $A$ are $(2,3)$ and centre $O$ are $(-2,5)$.
Let co-ordinates of point $B$ be $(x, y)$.
We know that centre of a circle is the midpoint of the diameter.
$\therefore$ By midpoint formula,
$-2=\frac{2+x}{2}$ and $5=\frac{3+y}{2}$
$\Rightarrow-4=2+x$ and $10=3+y$
$\Rightarrow x=-6$ and $y=7$

So, other end of the diameter is $(-6,7)$.

Hence, the correct answer is A.

Q7

Odd natural numbers are in the pattern 1,3,5,7,9.....
These numbers form an A.P. where $\mathrm{a}=1, \mathrm{~d}=3-1=2$
We know that, $S_{n}=\frac{n}{2}[2 a+(n-1) d]$

$$
\begin{aligned}
\therefore s_{20} & =\frac{20}{2}[2 \times 1+(20-1) \times 2] \\
& =\frac{20}{2}[2+19 \times 2] \\
& =10[2+38] \\
& =10 \times 40 \\
& =400
\end{aligned}
$$

Thus, the sum of first 20 odd natural numbers is 400 .
Hence, the correct answer is C.

Q8
The given equations are $a y^{2}+a y+3=0$ and $y^{2}+y+b=0$
Given, 1 is the root of both the equations
Therefore, $\mathrm{y}=1$ will satisfy both these equations.
Putting $y=1$ in $\mathrm{ay}^{2}+\mathrm{ay}+3=0$, we get
$a(1)^{2}+a \times 1+3=0$
$\therefore \mathrm{a}+\mathrm{a}+3=0$
$\Rightarrow 2 \mathrm{a}+3=0$
$\Rightarrow 2 \mathrm{a}=-3$
$\Rightarrow \mathrm{a}=-\frac{3}{2}$
Putting $y=1$ in $y^{2}+y+b=0$, we get
$(1)^{2}+1+b=0$
$\therefore 1+1+b=0$
$\Rightarrow 2+b=0$
$\Rightarrow b=-2$
$\therefore \mathrm{ab}=-\frac{3}{2} *(-2)=3 \quad[U \operatorname{sing}(1) \&(2)]$
Thus, the value of $a b$ is 3 .

Hence, the correct answer is A.

Q9

Given, $A P=4 \mathrm{~cm}, B P=3 \mathrm{~cm}$ and $A C=11 \mathrm{~cm}$.

The lengths of tangents drawn from an external point to the cirlce are equal.
$A P=A R, B P=B Q, C Q=C R$ $\qquad$
$A C=11 \mathrm{~cm}$
$\Rightarrow A R+R C=11 \mathrm{~cm}$
$\Rightarrow \mathrm{AP}+\mathrm{CQ}=11 \mathrm{~cm}$ [ From equation (1)]
$\Rightarrow 4 \mathrm{~cm}+\mathrm{CQ}=11 \mathrm{~cm}$
$\Rightarrow C Q=(11-4) \mathrm{cm}$
$\Rightarrow C Q=7 \mathrm{~cm}$
$B P=B Q=3 \mathrm{~cm}$

Now, $B C=B Q+Q C$
$\Rightarrow B C=(3+7) \mathrm{cm}$
$\Rightarrow B C=10 \mathrm{~cm}$

Hence, the correct option is B.

Q10
$\mathrm{EK}=9 \mathrm{~cm}$

As length of tangents drawn from an external point to the circle are equal.
$\therefore \mathrm{EK}=\mathrm{EM}=9 \mathrm{~cm}$

Also, $\mathrm{DH}=\mathrm{DK}$ and $\mathrm{FH}=\mathrm{FM}$
$\mathrm{EK}=\mathrm{EM}=9 \mathrm{~cm}$
$\Rightarrow E D+D K=9 \mathrm{~cm}$ and $E F+F M=9 \mathrm{~cm}$
$\Rightarrow E D+D H=9 \mathrm{~cm}$ and $E F+F M=9 \mathrm{~cm} \quad[$ From equation (i)] ....(ii)
Perimeter of $\triangle E D F=E D+D F+E F$
$=E D+D H+H F+E F$
$=(9+9) \mathrm{cm} \quad$ [From equation (ii)]
$=18 \mathrm{~cm}$

Hence, the correct option is A.
Q11
The given points are $A(0,2), B(3, p)$ and $C(p, 5)$.
According to the question, $A$ is equidistant from point $B$ and $C$.
$\therefore A B=A C$
$\Rightarrow \sqrt{(3-0)^{2}+(\mathrm{p}-2)^{2}}=\sqrt{(\mathrm{p}-0)^{2}+(5-2)^{2}}$
$\Rightarrow \sqrt{(3)^{2}+(\mathrm{p}-2)^{2}}=\sqrt{(\mathrm{p})^{2}+(3)^{2}}$
$\Rightarrow \sqrt{9+\mathrm{p}^{2}+4-4 \mathrm{p}}=\sqrt{\mathrm{p}^{2}+9}$
$\Rightarrow \sqrt{\mathrm{p}^{2}-4 \mathrm{p}+13}=\sqrt{\mathrm{p}^{2}+9}$
On squaring both sides, we obtain:

$$
\begin{aligned}
& \Rightarrow p^{2}-4 p+13=p^{2}+9 \\
& \Rightarrow-4 p=-4 \\
& \Rightarrow p=1
\end{aligned}
$$

Q12

Total number of outcomes $=50$

Multiples of 3 and 4 which are less than or equal to 50 are:

## 12,24,36,48

Favourable number of outcomes $=4$
Probability of the number being a multiple of 3 and 4
$=\frac{\text { Number of favourable outcomes }}{\text { Total number of outcomes }}$
$=\frac{4}{50}$
$=\frac{2}{25}$
Q13
Given, volume of hemisphere $=2425 \frac{1}{2} \mathrm{~cm}^{3}=\frac{4851}{2} \mathrm{~cm}^{3}$
Let the radius of the hemisphere be ' $r$ ' cm .
Volume of hemisphere $=\frac{2}{3} \pi r^{3}$
$\Rightarrow \frac{2}{3} \pi r^{3}=\frac{4851}{2}$
$\Rightarrow \frac{2}{3} \times \frac{22}{7} \times \mathrm{r}^{3}=\frac{4851}{2}$
$\Rightarrow \mathrm{r}^{3}=\frac{4851 \times 3 \times 7}{2 \times 2 \times 22}$
$\Rightarrow \mathrm{r}^{3}=\frac{441 \times 21}{2 \times 2 \times 2}$
$\Rightarrow \mathrm{r}^{3}=\frac{21 \times 21 \times 21}{2 \times 2 \times 2}$
$\Rightarrow r=\sqrt[3]{\frac{21 \times 21 \times 21}{2 \times 2 \times 2}}$
$\Rightarrow r=\frac{21}{2} \mathrm{~cm}$
$\therefore$ Curved surface area of hemisphere $=2 \pi r^{2}$
$=2 \times \frac{22}{7} \times\left(\frac{21}{2}\right)^{2}$
[ Using (1)]
$=2 \times \frac{22}{7} \times \frac{21 \times 21}{2 \times 2}$
$=693 \mathrm{~cm}^{2}$
Q14
Given that: $\mathrm{OA}=8 \mathrm{~cm}, \mathrm{OB}=5 \mathrm{~cm}$ and $\mathrm{AP}=15 \mathrm{~cm}$


To find: BP
Construction : Join OP.
Now, $\mathrm{OA} \perp \mathrm{AP}$ and $\mathrm{OB} \perp \mathrm{BP} \because\left\lceil\left[\begin{array}{c}\text { angent to a circle is perpendicular to the } \\ \text { Radius through the point of contact }\end{array}\right]\right.$
$\Rightarrow \angle \mathrm{OAP}=\angle \mathrm{OBP}=90^{\circ}$
On applying Pythagoras theorem in $\triangle O A P$, we obtain:
$(O P)^{2}=(O A)^{2}+(A P)^{2}$
$\Rightarrow(O P)^{2}=(8)^{2}+(15)^{2}$
$\Rightarrow(O P)^{2}=64+225$
$\Rightarrow O P=\sqrt{289}$
$\Rightarrow(O P)^{2}=289$
$\Rightarrow \mathrm{OP}=17$
Thus, the length of $O P$ is 17 cm .
On appling Pythagoras theorem in $\triangle O B P$, we obtain :
$(O P)^{2}=(O B)^{2}+(B P)^{2}$
$\Rightarrow(17)^{2}=(5)^{2}+(B P)^{2}$
$\Rightarrow 289=25+(B P)^{2}$
$\Rightarrow(B P)^{2}=289-25$
$\Rightarrow(B P)^{2}=264$
$\Rightarrow B P=16.25 \mathrm{~cm}$ (approx.)

Hence, the length of $B P$ is 16.25 cm .

Q15
Given : An isoceles $\triangle A B C$ with $A B=A C$, circumscribing a circle.

To prove : P bisects BC

Proof: AR and AQ are the tangents drawn from an external point $A$ to the circle.
$\therefore A R=A Q$ (Tangents drawn from an external point to the circle are equal)
Similarly, $B R=B P$ and $C P=C Q$.
It is given that in $\triangle A B C, A B=A C$.
$\Rightarrow A R+R B=A Q+Q C$.
$\Rightarrow B R=Q C(A s A R=A Q)$
$\Rightarrow \mathrm{BP}=\mathrm{CP}(\mathrm{As} \mathrm{BR}=\mathrm{BP}$ and $\mathrm{CP}=\mathrm{CQ})$
$\Rightarrow P$ bisects $B C$.

Hence, the result is proved.
OR


Given : Two concentric circles $C_{1}$ and $C_{2}$ with centre $O$, and $A B$ is the chord of $C_{1}$ touching $C_{2}$ at $C$.
To prove : $\mathrm{AC}=\mathrm{CB}$

Construction: Join OC.

Proof: $A B$ is the chord of $C_{1}$ touching $C_{2}$ at $C$, then $A B$ is the tangent to $C_{2}$ at $C$ with $O C$ as its radius.
We know that the tangent at any point of a circle is perpendicular to the radius through the point of contact.
$\therefore O C \perp A B$
Considering, AB as the chord of the circle $C_{1}$. So, $\mathrm{OC} \perp \mathrm{AB}$.
$\therefore \mathrm{OC}$ is the bisector of the chord AB .

Hence, $A C=C B$ (Perpendicular from the centre to the chord bisects the chord).
Q16
It is given that $O A B C$ is a square of side 7 cm .
$\therefore$ Area of square $\mathrm{OABC}=(7)^{2} \mathrm{~cm}^{2}=49 \mathrm{~cm}^{2}$

Also, it is given that OAPC is a quadrant of circle with centre 0 .
$\therefore$ Radius of the quadrant of the circle $=O A=7 \mathrm{~cm}$
$\therefore$ Area of the quadrant of circle $=\frac{1}{4}\left(\pi r^{2}\right)$
$=\frac{1}{4}\left(\pi * 7^{2}\right) \mathrm{cm}^{2}$
$=\frac{49 \pi}{4} \mathrm{~cm}^{2}$
$=\frac{49}{4} \times \frac{22}{7} \mathrm{~cm}^{2}$
$=\frac{77}{2} \mathrm{~cm}^{2}$
$\therefore$ Area of the shaded region $=$ Area of Square - Area of Quadrant of circle.
$=\left[49-\frac{77}{2}\right] \mathrm{cm}^{2}$
$=\left[\frac{98-77}{2}\right] \mathrm{cm}^{2}$
$=\frac{21}{2} \mathrm{~cm}^{2}$
$=10.5 \mathrm{~cm}^{2}$

Thus, the area of the shaded region is $10.5 \mathrm{~cm}^{2}$.
Q17
Three digit natural numbers which are multiples of 7 are 105, 112, 119,.....,994.
105, 112, 119,....... 994 are in A.P.
First term (a) = 105
Commom difference (d) $=7$
Let 994 be the $\mathrm{n}^{\text {th }}$ term of A.P.
$\therefore a_{n}=994$
$\Rightarrow 105+(n-1) \times 7=994\left[\because a_{n}=a+(n-1) d\right]$
$\Rightarrow 7(n-1)=994-105$
$\Rightarrow 7(n-1)=889$
$\Rightarrow \mathrm{n}-1=127$
$\Rightarrow \mathrm{n}=128$
Sum of all the terms of A.P. $=\frac{128}{2}(105+994) \quad\left[\because S n=\frac{n}{2}(a+1), I\right.$ being last term $]$ $=64 \times 1099$ $=70336$

Thus, the sum of all three digit natural numbers which are multiples of 7 is 70336 .

## Q18

The given quadratic equation is $3 \mathrm{x}^{2}-2 \mathrm{kx}+12=0$
On comparing it with the general quadratic equation $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$, we obtain
$\mathrm{a}=3, \mathrm{~b}=-2 \mathrm{k}$ and $\mathrm{c}=12$
discriminant, ' $D$ ' of the given quadratic equation is given by
$D=b^{2}-4 a c$

$$
\begin{aligned}
& =(-2 k)^{2}-4 * 3 * 12 \\
& =4 k^{2}-144
\end{aligned}
$$

For equal roots of the given quadratic equations, Discriminant will be equal to 0 .
i.e., $D=0$
$\Rightarrow 4 \mathrm{k}^{2}-144=0$
$\Rightarrow 4\left(\mathrm{k}^{2}-36\right)=0$
$\Rightarrow \mathrm{k}^{2}=36$
$\Rightarrow \mathrm{k}= \pm 6$

Thus, the values of $k$ for which the quadratic equation $3 x^{2}-2 k x+12=0$ will have equal roots are 6 and -6 .

Q19

The given points are $A(3,-5)$ and $B(-4,8)$.

Here, $x_{1}=3, y_{1}=-5, x_{2}=-4$ and $y_{2}=8$.
Since $\frac{A P}{P B}=\frac{K}{1}$, the point $P$ divides the line segment joining the points $A$ and $B$ in the ratio $K: 1$. The coordinates of P can be found using the section formula $\frac{m x_{2}+n x_{1}}{m+n}, \frac{m y_{2}+n y_{1}}{m+n} \mathrm{n}$
here, $\mathrm{m}=\mathrm{K}$ and $\mathrm{n}=1$
Co-ordinates of $\mathrm{P}=\left(\frac{\mathrm{Kx}(-4)+1 \times 3}{\mathrm{~K}+1}, \frac{\mathrm{~K} \times 8+1 \times(-5)}{\mathrm{K}+1}\right)=\left(\frac{-4 \mathrm{~K}+3}{\mathrm{~K}+1}, \frac{8 \mathrm{~K}-5}{\mathrm{~K}+1}\right)$
It is given that, $P$ lies on the line $x+y=0$.
$\therefore \frac{-4 \mathrm{~K}+3}{\mathrm{~K}+1}+\frac{8 \mathrm{~K}-5}{\mathrm{~K}+1}=0$
$\Rightarrow \frac{-4 \mathrm{~K}+3+8 \mathrm{~K}-5}{\mathrm{~K}+1}=0$
$\Rightarrow 4 \mathrm{~K}-2=0$
$\Rightarrow 4 \mathrm{~K}=2$
$\Rightarrow K=\frac{1}{2}$
Thus, the required value of $K$ is $\frac{1}{2}$.

Q20

Given, vertices of a triangle are (1,-3), (4, p) and (-9, 7).
$x_{1}=1, y_{1}=-3$
$x_{2}=4, y_{2}=p$
$x_{3}=-9, y_{3}=7$
Area of given triangle
$=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$
$=\frac{1}{2}[1(p-7)+4(7+3)+(-9)(-3-p)]$
$=\frac{1}{2}[p-7+40+27+9 p]$
$=\frac{1}{2}[10 p+60]$
$=5(p+6)$

Here, the obtained expression may be positive or negative.
$\therefore 5(p+6)=15$ or $5(p+6)=-15$
$\Rightarrow p+6=3$ or $p+6=-3$
$\Rightarrow p=-3$ or $p=-9$

Q21


Since ABCD is a parallelogram,
$A B=C D . . .(1)$
$B C=A D . . .(2)$
It can be observed that
DR = DS (Tangents on the circle from point D)
$C R=C Q$ (Tangents on the circle from point $C$ )
$B P=B Q$ (Tangents on the circle from point $B$ )
AP $=A S$ (Tangents on the circle from point A)
Adding all these questions, we obtain
$D R+C R+B P+A P=D S+C Q+B Q+A S$
$(D R+C R)+(B P+A P)=(D S+A S)+(C Q+B Q)$
$C D+A B=A D+B C$
On putting the values of equations (1) and (2) in this equation, we obtain
$2 A B=2 B C$
$A B=B C \ldots(3)$
Comparing equations (1),(2) and (3), we obtain
$A B=B C=C D=D A$
Hence, $A B C D$ is a rhombus.

OR


Let $A B C D$ be a quadrilateral circumscribing a circle centered at $O$ such that it touches the circle at point $P, Q, R, S$. let us join the vertices of the quadrilateral $A B C D$ to the center of the circle.

Consider $\triangle$ OAP and $\triangle$ OAS,
AP = AS (Tangents from the same point)
$\mathrm{OP}=\mathrm{OS}$ (Radii of the same circle)
$O A=O A$ (Common side)
$\triangle \mathrm{OAP} \cong \triangle$ OAS (SSS congruence criterion)
Therefore, $A \longleftrightarrow A, P \longleftrightarrow \mathrm{~S}, \mathrm{O} \longleftrightarrow \mathrm{O}$
And thus, $\angle \mathrm{POA}=\angle \mathrm{AOS}$
$\angle 1=\angle 8$

Similarly,
$\angle 2=\angle 3$
$\angle 4=\angle 5$
$\angle 6=\angle 7$
$\angle 1+\angle 2+\angle 3+\angle 4+\angle 5+\angle 6+\angle 7+\angle 8=360^{\circ}$
$(\angle 1+\angle 8)+(\angle 2+\angle 3)+(\angle 4+\angle 5)+(\angle 6+\angle 7)=360^{\circ}$
$2 \angle 1+2 \angle 2+2 \angle 5+2 \angle 6=360^{\circ}$
$2(\angle 1+\angle 2)+2(\angle 5+\angle 6)=360^{\circ}$
$(\angle 1+\angle 2)+(\angle 5+\angle 6)=180^{\circ}$
$\angle \mathrm{AOB}+\angle \mathrm{COD}=180^{\circ}$
Similarly, we can prove that $\angle \mathrm{BOC}+\angle \mathrm{DOA}=180^{\circ}$
Hence, opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

Q22


It is given that, height $(\mathrm{h})$ of cylindrical part = height $(\mathrm{h})$ of the conical part $=7 \mathrm{~cm}$
Diameter of the cylindrical part $=12 \mathrm{~cm}$
$\therefore$ Radius ( r ) of the cylindrical part $=\frac{12}{2} \mathrm{~cm}=6 \mathrm{~cm}$
$\therefore$ Radius of conical part $=6 \mathrm{~cm}$
Slant height (I) of conical part $=\sqrt{\mathrm{r}^{2}+\mathrm{h}^{2}} \mathrm{~cm}$
$=\sqrt{6^{2}+7^{2}} \mathrm{~cm}$
$=\sqrt{36+49} \mathrm{~cm}$
$=\sqrt{85} \mathrm{~cm}$
$=9.22 \mathrm{~cm}$ (approx.)
Total surface area of the remaining solid
$=$ CSA of cylindrical part + CSA of conical part + Base area of the circular part

$$
\begin{aligned}
& =2 \pi r h+\pi r l+\pi \mathrm{r}^{2} \\
& =2 \times \frac{22}{7} \times 6 \times 7 \mathrm{~cm}^{2}+\frac{22}{7} \times 6 \times 9.22 \mathrm{~cm}^{2}+\frac{22}{7} \times 6 \times 6 \mathrm{~cm}^{2} \\
& =264 \mathrm{~cm}^{2}+173.86 \mathrm{~cm}^{2}+113.14 \mathrm{~cm}^{2} \\
& =551 \mathrm{~cm}^{2} \\
& \text { OR }
\end{aligned}
$$



Height $\left(h_{1}\right)$ of cylindrical bucket $=32 \mathrm{~cm}$
Radius ( $r_{1}$ ) of circular end of bucket $=18 \mathrm{~cm}$
Height $\left(h_{2}\right)$ of conical heap $=24 \mathrm{~cm}$
Let the radius of the circular end of conical heap be $\mathrm{r}_{2}$.
The volume of sand in the cylindrical bucket will be equal to the volume of sand in the conical heap.
Volume of sand in the cylindrical bucket = Volume of sand in conical heap
$\pi * r_{1}^{2} * h_{1}=\frac{1}{3} \pi * r_{2}^{2} * h_{2}$
$\pi * 18^{2} * 32 \pi \frac{1}{3} * 24$
$\pi * 18^{2} * 32=\frac{1}{3} \pi * r_{2}^{2} * 24$
$r_{2}^{2}=\frac{3 * 18^{2} * 32}{24}=18^{2} \times 4$
$\mathrm{r}_{2}=18 \times 2=36 \mathrm{~cm}$
slant height $=\sqrt{36^{2}+24^{2}}=12^{2}+\left(3^{2}+2^{2}\right)=12 \sqrt{13} \mathrm{~cm}$
therefore, the radius and slant height of the conical heap are 36 cm and $12 \sqrt{13} \mathrm{~cm}$ respectively.

## Q23

$P Q$ and $A B$ are the arcs of two concentric circles of radii 7 cm and 3.5 cm respectively.
Let $r_{1}$ and $r_{2}$ be the radii of the outer and the inner circle respectively.
Suppose $\theta$ be the angle subtended by the arcs at the centre O .
Then $\mathrm{r}_{1}=7 \mathrm{~cm}, \mathrm{r}_{2}=3.5 \mathrm{~cm}$ and $\theta=30^{\circ}$
Area of the shaded region
$=$ Area of sector OPQ - Area of sector OAB
$=\frac{\theta}{360^{0}} \pi r_{1}^{2}-\frac{\theta}{360^{0}} \pi r_{2}^{2}$
$=\frac{\theta}{360^{0}} \pi\left(r_{1}^{2}-r_{2}^{2}\right)$
$=\frac{30^{0}}{360^{0}} \times \frac{22}{7}\left[(7 \mathrm{~cm})^{2}-(3.5 \mathrm{~cm})^{2}\right]$
$=\frac{1}{12} \times \frac{22}{7} \times(49-12.25) \mathrm{cm}^{2}$
$=\frac{1}{12} \times \frac{22}{7} \times 36.75 \mathrm{~cm}^{2}$
$=9.625 \mathrm{~cm}^{2}$
thus, the area of the shaded region is $9.625 \mathrm{~cm}^{2}$.
Q24
The given quadratic equation is $4 x^{2}-4 a x+\left(a^{2}-b^{2}\right)=0$
$4 x^{2}-4 a x+\left(a^{2}-b^{2}\right)=0$
$\therefore 4 \mathrm{x}^{2}-4 \mathrm{ax}+(\mathrm{a}-\mathrm{b})(\mathrm{a}+\mathrm{b})=0$
$\Rightarrow 4 x^{2}+[-2 a-2 a+2 b-2 b] x+(a-b)(a+b)=0$
$\Rightarrow 4 x^{2}+(2 b-2 a) x-(2 a+2 b) x+(a-b)(a+b)=0$
$\Rightarrow 4 x^{2}+2(b-a) x-2(a+b) x+(a-b)(a+b)=0$

$$
\begin{aligned}
& \Rightarrow \quad 2 x[2 x-(a-b)]-(a+b)[2 x-(a-b)]=0 \\
& \Rightarrow \quad[2 x-(a-b)] \text { or }[2 x-(a+b)=0 \\
& \Rightarrow \quad 2 x=a-b \text { or } 2 x=a+b \\
& \Rightarrow \quad x=\frac{a-b}{2} \text { or } x=\frac{a+b}{2}
\end{aligned}
$$

Thus, the solution of the given quadratic equation is given by $x=\frac{a-b}{2}$ or $x=\frac{a+b}{2}$

OR

The given quadratic equation is $3 x^{2}-2 \sqrt{6 x}+2=0$
Comparing with the quadratic equation $a x^{2}+b x+c=0$, we have
$a=3, b=-2 \sqrt{6}$ and $c=2$
discriminant of the given quadratic equation

$$
\begin{aligned}
D= & b^{2}-4 a c=(2 \sqrt{6})^{2}-4 \times 3 \times 2=24-24=0 \\
\therefore x & =\frac{-(-2 \sqrt{6}) \pm \sqrt{0}}{2 \times 3} \because x=\frac{-b \pm \sqrt{\hbar}}{2 a} \\
& \Rightarrow x=\frac{2 \sqrt{6}}{6} \\
& \Rightarrow x=\frac{\sqrt{6}}{3}
\end{aligned}
$$

Thus, the solution of the given quadratic equation is $x=\frac{\sqrt{6}}{3}$.

Q25


Let $C$ be the position of kite above the ground such that it subtends an angle of $60^{\circ}$ at point $A$ on the ground.

Suppose the length of the string. AC be Im.
Given, $B C=45 \mathrm{~m}$ and $\angle B A C=60^{\circ}$.
In $\triangle \mathrm{ABC}$ :
$\sin 60^{\circ}=\frac{\mathrm{BC}}{\mathrm{AC}} \because \sin \theta=\frac{\text { Pergendicular }}{\text { Hypotensue }}$ ]
therefore, $\frac{\sqrt{3}}{2}=\frac{45}{1}$

$$
\Rightarrow \quad \mathrm{I}=\frac{45 \times 2}{\sqrt{3}}=\frac{90}{\sqrt{3}}=30 \sqrt{3}
$$

Thus, the length of the string is $30 \sqrt{3} \mathrm{~m}$.
Q26


Given:
$\mathrm{BC}=6 \mathrm{~cm}, \angle \mathrm{C}=30^{\circ}$ and $\angle \mathrm{A}=105^{\circ}$
Therefore $\angle \mathrm{B}=180^{\circ}-(\angle \mathrm{A}+\angle \mathrm{C})\left(\ln \triangle \mathrm{ABC}, \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}\right)$
$=180^{\circ}-\left(105^{0}+30^{\circ}\right)$
$=45^{\circ}$
Steps of construction :

1. draw a line $B C=6 \mathrm{~cm}$.
2. draw a ray CN making an angle of $30^{\circ}$ at C .
3. draw a ray BM making an angle of $45^{\circ}$ at B .
4. locate the point of intersection of rays $C N$ and $B M$ and name it as $A$.
5. $A B C$ is the triangle whose similar triangle is to be drawn.
6. Draw any ray $B X$ making anacute angle with $B C$ on the side opposite to the vertex $A$.
7. Locate 3 (Greater of 2 and 3 in $2 / 3$ ) points $B_{1}, B_{2}$ and $B_{3}$ on $B X$ so that $B B_{1}=B_{1} B_{2}=B_{2} B_{3}$.
8. Join $B_{3} C$ and draw a line through $B_{2}$ (smaller of 2 and 3 in $2 / 3$ ) parallel to $B_{3} C$ to intersect $B C$ at $C^{\prime}$.
9. Draw a line through $C^{\prime}$ parallel to the line $C A$ to intersect $B A$ at $A^{\prime}$.
10. $A$ ' $B C$ ' is the required similar triangle whose sides are $2 / 3$ times the corresponding sides of $\triangle A B C$.

## Q27

Let $a$ be the first term and $d$ be the common difference of the given A.P.

According to the given question,
$16^{\text {th }}$ term of the $A P=2 \times 8^{\text {th }}$ term of the $A P+1$
i.e., $a_{16}=2 a_{8}+1$

$$
\begin{align*}
& \left.a+(16-1) d=2[a+(8-1) d]+5 \quad \text { (because } a_{n}=a+(n-1) d\right) \\
& \quad \Rightarrow a+15 d=2[a+7 d]+5 \\
& \quad \Rightarrow a+15 d=2 a+14 d+5 \\
& \quad \Rightarrow d=a+1 \tag{1}
\end{align*}
$$

Also, $12^{\text {th }}$ term, $\mathrm{a}_{12}=47$

$$
\begin{aligned}
& \Rightarrow a+(12-1) d=47 \\
& \Rightarrow a+11 d=47 \\
& \Rightarrow a+11(a+1)=47 \\
& \Rightarrow a+11 a+11=47 \\
& \Rightarrow 12 a=36 \\
& \Rightarrow a=36
\end{aligned} \quad[\text { Using (1)] }
$$

On putting the value of $a$ in (1), we get $d=3+1=4$
Thus, $n^{\text {th }}$ term of the AP, $a_{n}=a+(n-1) d$
On putting the respective values of a and d, we get
$a_{n}=3+(n-1) 4=3+4 n-4=4 n-1$
hence, $\mathrm{n}^{\text {th }}$ term of the given AP is $4 \mathrm{n}-1$.
Q28
Total number of cards in a deck of cards $=52$
Therefore, Total number of outcomes $=52$
(i) let A denote the event of getting a king of red colour.

There are two cards in favour of getting a king of red colour i.e., king of heart and king of diamond.
Number of outcomes in favour of event $A=2$
$\therefore \mathrm{P}(\mathrm{A})=\frac{\text { Outcomes in favour of event } \mathrm{A}}{\text { Total number of outcomes }}=\frac{2}{52}=\frac{1}{26}$
(ii) let B denote the event of getting a face card.

There are 12 cards in favour of getting a face card i.e., 4 King, 4 Queen and 4 Jack cards.
Number of outcomes in favour of event B $=12$
$P(B)=\frac{\text { Outcomes in favour of event } B}{\text { Total number of outcomes }}=\frac{12}{52}=\frac{3}{13}$
(iii) let C denote the event of getting a queen of diamond.

There is one queen of diamond in the deck of cards.
$P(C)=\frac{\text { Outcomes in favour of event } C}{\text { Total number of outcomes }}=\frac{1}{52}$
Q29

Let the height of the bucket be h cm .
Suppose $r_{1}$ and $r_{2}$ be the radii of the circular ends of the bucket.
Given, $r_{1}=28 \mathrm{~cm}$ and $r_{2}=21 \mathrm{~cm}$
Capacity of bucket $=28.49$ litres
$\therefore$ Volume of the bucket $=28.49 \times 1000 \mathrm{~cm}^{3}\left[1\right.$ litre $=1000 \mathrm{~cm}^{3}$ ]

$$
\begin{aligned}
& \Rightarrow \frac{1}{3} \pi h\left(r_{1}^{2}+r_{2}^{2}+r_{1} r_{2}\right)=28.49 \times 1000 \mathrm{~cm}^{3} \\
& \Rightarrow \frac{1}{3} \times \frac{22}{7} \times \mathrm{h}\left[(28)^{2}+(21)^{2}+(28 \times 21)\right] \mathrm{cm}^{2}=28490 \mathrm{~cm}^{3} \\
& \Rightarrow \frac{22}{21} \times \mathrm{h} \times 1813=28490 \mathrm{~cm}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow h=\frac{28940 * 21}{22 * 1813} \\
& \Rightarrow h=15 \mathrm{~cm}
\end{aligned}
$$

Thus, the height of the bucket is 15 cm .
Q30


Let $A B$ be the hill and $C D$ be the tower.
Angle of elevation of the hill at the foot of the tower is $60^{\circ}$. i.e., $\angle A D B=60^{\circ}$ and the angle of depression of the foot of hill from the top of the tower is $30^{\circ}$, i.e., $\angle \mathrm{CBD}=30^{\circ}$.

Now in right angled $\triangle C B D$ :
$\tan 30^{\circ}=\frac{\mathrm{CD}}{\mathrm{BD}}$

$$
\begin{aligned}
& \Rightarrow B D=\frac{C D}{\tan 30^{0}} \\
& \Rightarrow B D=\frac{50}{\left[\frac{1}{\sqrt{3}}\right]} \\
& \Rightarrow B D=50 \sqrt{3} \mathrm{~m}
\end{aligned}
$$

In right $\triangle A B D$ :
$\tan 60^{\circ}=\frac{A B}{C D}$
$\Rightarrow \mathrm{AD}=\mathrm{BD} X \tan 60^{\circ}$
$=50 \sqrt{3} \times \sqrt{3} \mathrm{~m}$
$=50 \times 3 \mathrm{~m}$
$=150 \mathrm{~m}$
Hence, the height of the hill is 150 m .


Given : A circle ( $0, r$ ) and a tangent I at point $A$.
To prove: $O A \perp 1$
Construction : take any point B other than A on the tangent I. Join OB.
Suppose OB meets the cirlce at C .
Proof : Among all line segments joining the centre O to any point on I , the perpendicular is the shortest tol.

So, in order to prove $\mathrm{OA} \Perp$ we need to prove that OA is shorter than OB .
$O A=O C$ (Radius of same circle)
Now, $\mathrm{OB}=\mathrm{OC}+\mathrm{BC}$
$\Rightarrow \mathrm{OB}>\mathrm{OC}$
$\Rightarrow O B>O A$
$\Rightarrow O A>O B$
$B$ is an arbitrary point on the tangent $I$. thus, $O A$ is shorter than any other line segment joining $O$ to any point on I.

Hence $O A$ is perpendicular to $I$.
OR


Let the sides of the quadrilateral $A B C D$ touch the circle at points $P, Q$, Rand $S$ as shown in the figure.
We know that, tangents drawn from an external point to the circle are equal in length.
Therefore,


Therefore,
$A B+C D=(A P+B P)+(C R+D R)$
$=(A S+B Q)+(C Q+D S) \quad[$ Using (1)]
$=(A S+D S)+(B Q+C Q)$
$=A D+B C$

Hence, $A B+C D=A D+B C$

Q32

Let the number of books purchased by the shopkeeper be x .

Cost price of $x$ books $=$ Rs 80
$\therefore$ Original cost price of one book $=\operatorname{Rs} \frac{80}{x}$
If the shopkeeper had pruchased 4 more books, then the number of books purchased by him would be $(x+4)$.
$\therefore$ New cost price of one book $=\operatorname{Rs} \frac{80}{x+4}$

Given, Original cost price of one book - New cost price of one book = Rs 1

$$
\begin{aligned}
& \therefore \frac{80}{x}-\frac{80}{x+4}=1 \\
\Rightarrow & \frac{80(x+4)-80 x}{x(x+4)}=1 \\
\Rightarrow & 80 x+320-80 x=x(x+4) \\
\Rightarrow & x^{2}+4 x=320 \\
\Rightarrow & x^{2}+4 x-320=0 \\
\Rightarrow & x^{2}+20 x-16 x-320=0 \\
\Rightarrow & x(x+20)-16(x+20)=0 \\
\Rightarrow & (x-16)(x+20)=0 \\
\Rightarrow & x-16=0 \text { or } x+20=0 \\
\Rightarrow & x=16 \text { or } x=-20
\end{aligned}
$$

$$
\therefore \mathrm{x}=16 \quad \text { (because number of books cannot be negative) }
$$

$$
O R
$$

Let the first number be x .

Given : First number + Second number $=9$
$\therefore \mathrm{x}+$ Second number $=9$
$\Rightarrow$ Second number $=9-x$
Given, $\frac{1}{\text { First number }}+\frac{1}{\text { Second number }}=\frac{1}{2}$

$$
\therefore \frac{1}{x}+\frac{1}{9-x}=\frac{1}{2}
$$

$$
\begin{aligned}
& \Rightarrow \frac{9-x+x}{x(9-x)}=\frac{1}{2} \\
& \Rightarrow 9 \times 2=9 x-x^{2} \\
& \Rightarrow x^{2}-9 x+18=0 \\
& \Rightarrow x^{2}-6 x-3 x+18=0 \\
& \Rightarrow x(x-6)-3(x-6)=0 \\
& \Rightarrow(x-3)(x-6)=0 \\
& \Rightarrow x-3=0 \text { or } x-6=0 \\
& \Rightarrow x=3 \text { or } x=6
\end{aligned}
$$

when $x=3$, we have
$9-x=9-3=6$

When $x=6$, we have
$9-x=9-6=3$

Thus, the two numbers are 3 and 6 .

Q33

First term of the A.P $(\mathrm{a})=7$; sum of first 20 terms $=-240$.

The sum of first in terms of an AP, $S n=\frac{n}{2}[2 a+(n-1) d]$, where $a$ is the first term and $d$ is the common difference.

$$
\begin{aligned}
\therefore S_{20} & =\frac{20}{2}[2 \times 7+(20-1) \mathrm{d}]=-240 \\
& \Rightarrow 10[14+19 \mathrm{~d}]=-240 \\
& \Rightarrow 14+19 \mathrm{~d}=-24 \\
& \Rightarrow 19 \mathrm{~d}=-24-14 \\
& \Rightarrow 19 \mathrm{~d}=-38 \\
& \Rightarrow \mathrm{~d}=-2
\end{aligned}
$$

now, $24^{\text {th }}$ term of the AP, $a_{24}=a+(24-1) d$
on putting respective values of $a$ and $d$, we get
$a_{24}+7+23 \times(-2)=7-46=-39$
hence, $24^{\text {th }}$ term of the given AP is -39 .

Q34

Let $r$ and $h$ be radius and height of the cone respectively.

Radius of cone (r) = 7 cm (Given)

Diameter of cone $=2 \times r=(2 \times 7) \mathrm{cm}=14 \mathrm{~cm}$


According to the question, height of the cone is equal to its diameter.
$\therefore$ Height of cone (h) $=14 \mathrm{~cm}$

Radius of hemisphere $=$ Radius of cone $=7 \mathrm{~cm}$
$\therefore$ Volume of solid $=$ Volume of cone + Volume of hemisphere
$=\frac{1}{3} \pi r^{2} h+\frac{2}{3} \pi r^{3}$
$=\frac{\pi r^{2}}{3}[h+2 r]$
$=\frac{1}{3} \times \frac{22}{7} \times 7 \times 7 \times[14+(2 \times 7)] \mathrm{cm}^{3}$
$=\frac{22}{3} \times 7 \times 28 \mathrm{~cm}^{3}$
$=\frac{4312}{2} \mathrm{~cm}^{3}$
$=1437.33 \mathrm{~cm}^{3}$

Thus, the volume of the solid is $1437.33 \mathrm{~cm}^{3}$.

