CBSE Class 10 Maths Paper Solution

General Instructions:

(i) All questions are compulsory.
(ii) The question paper consists of 34 questions divided into four sections A, B, C and D.
(iii) Sections A contains 8 questions of one mark each, which are multiple choice type questions, section B contains 6 questions of two marks each, section C contains 10 questions of three marks each, and section D
(iv) Use of calculations is not permitted.

Q1

The common difference of the AP $\frac{1}{\mathrm{p}}, \frac{1-\mathrm{p}}{\mathrm{p}}, \frac{1-2 \mathrm{p}}{\mathrm{p}}, \ldots$. can be found out by finding the difference between the second term and first term i.e. $\frac{1-p}{p}-\frac{1}{p}=\frac{1-p-1}{p}=\frac{-p}{p}=-1$

The correct answer is -1 which is given by option C.
Q2

Since, $A P \perp P B, C A \perp A P, C B \perp B P$ and $A C=C B=$ radius of the circle, therefore $A P B C$ is a square having side equal to 4 cm .

Therefore, length of each tangent is 4 cm .
The correct answer is 4 cm which is given by option B.

Q3

Given that $A B, B C, C D$ and $A D$ are tangents to the circle with centre O at Q, P, S and R respectively. $A B=$ $29 \mathrm{~cm}, A D=23, D S=5 \mathrm{~cm}$ and $\angle B=90^{\circ}$.

Join PQ .
We know that, the lengths of the tangents drawn from an external point to a circle are equal.
$D S=D R=5 \mathrm{~cm}$
$\therefore A R=A D-D R=23 \mathrm{~cm}-5 \mathrm{~cm}=18 \mathrm{~cm}$
$A Q=A R=18 \mathrm{~cm}$
$\therefore Q B=A B-A Q=29 \mathrm{~cm}-18 \mathrm{~cm}=11 \mathrm{~cm}$
$Q B=B P=11 \mathrm{~cm}$
In right $\triangle P Q B, P Q^{2}=Q B^{2}+B P^{2}=(11 \mathrm{~cm})^{2}+(11 \mathrm{~cm})^{2}=2 \times(11 \mathrm{~cm})^{2}$
$P Q=11 \sqrt{2} \mathrm{~cm}(1)$
In right $\triangle \mathrm{PQB}$,
$P Q^{2}=O Q^{2}+O P^{2}+r^{2}+r^{2}=2 r^{2}$
$P Q=\sqrt{2 r}$
From (1) and (2), we get
$r=11 \mathrm{~cm}$
thus, the radius of the circle is 11 cm .
The correct answer is $\mathbf{1 1}$ which is given by option \mathbf{A}.
Q4

Let $A B$ be the tower of height 75 m .
$\angle \mathrm{CBD}=\angle \mathrm{ACB}=30^{\circ}$
Suppose C be the position of the car from the base of the tower.
In right $\triangle A B C$,

$$
\begin{aligned}
& \operatorname{Cot} 30^{\circ} \\
&=\frac{A C}{A B} \\
& \Rightarrow A C=A B \cot 30^{\circ} \\
& \Rightarrow A C=75 \mathrm{~m} \times \sqrt{3} \\
& \Rightarrow A C=75 \sqrt{3} \mathrm{~m}
\end{aligned}
$$

Thus, the distance of the car from the base of the tower is $75 \sqrt{3} \mathrm{~m}$.
The correct answer is $75 \sqrt{3}$ which is given by option \mathbf{C}.

Q5
When a die is thrown once, the sample space is given by, $S=\{1,2,3,4,5$, and 6$\}$
Then, the event, E of getting an ever number is given by, $E=\{2,4$, and 6$\}$
\therefore Probability of getting an even number $=P(E) \therefore P(E)=\frac{\text { Number of favourable outcomes }}{\text { Number of all possible outcom es }}=\frac{3}{6}=\frac{1}{2}$
The correct answer is $\frac{1}{2}$ which is given by option \mathbf{A}.

Q6

If the given that the box contains 90 discs, numbered from 1 to 90 .
As one disc is drawn at random from the box, the sample space is given by, $S=\{1,2,3, \ldots 90\}$
The prime number less than 23 are 2,3,5,7,11,13,17, and 19 .
Then, the event, E of getting a prime number is given by, $E=\{2,3,5,7,11,13,17,19\}$
$\therefore P(E)=\frac{\text { Number of favourable outcomes }}{\text { Number of all possible outcomes }}=\frac{8}{90}=\frac{4}{45}$
The correct answer is $\frac{4}{45}$ which is given by option C.
Q7

Construction : Draw AM \perp BC.

It can be observed from the given figure that $B C=5$ unit and $A M=3$ unit.
It $\triangle \mathrm{ABC}, \mathrm{BC}$ is the base and AM is the height.

Area of triangle $A B C=\frac{1}{2} x$ base x height
$=\frac{1}{2} \times B C \times A M$
$=\frac{1}{2} \times 5 \times 3$ sq.units
$=7.5$ sq.units

The correct answer is 7.5 which is given by option \mathbf{C}.

Q8
Difference between circumference and radius of the circle $=37 \mathrm{~cm}$

Let r be the radius of the circle.
$\therefore 2 \pi r-r=37 c m$

$$
\begin{aligned}
& \Rightarrow r(2 \pi-1)=37 \mathrm{~cm} \\
& \Rightarrow r\left(2 \times \frac{22}{7}-1\right)=37 \mathrm{~cm} \\
& \Rightarrow r \times \frac{37}{7}=37 \mathrm{~cm} \\
& \Rightarrow r=7 \mathrm{~cm}
\end{aligned}
$$

\therefore Circumference of the circle $=2 \pi r=2 \times \frac{22}{7} \times 7 \mathrm{~cm}=44 \mathrm{~cm}$

The correct answer is $\mathbf{4 4}$ which is given by option B.
Q9

$$
\begin{array}{ll}
& 4 \sqrt{3 x^{2}}+5 x-2 \sqrt{3}=0 \\
\Rightarrow & 4 \sqrt{3} x^{2}+8 x-3 x-2 \sqrt{3}=0 \\
\Rightarrow & 4 x(\sqrt{3} x+2)-\sqrt{3}(\sqrt{3}+2)=0 \\
\Rightarrow & (4 x-\sqrt{3})(\sqrt{3} x+2)=0 \\
& \therefore x=\frac{\sqrt{3}}{4} \text { or } x=-\frac{2}{\sqrt{3}}
\end{array}
$$

Q10
All the three-digit natural numbers that are divisible by 7 will be of the form $7 n$.
Therefore, $100 \leq 7 n \leq 999=>14 \frac{2}{7} \leq n \leq 142 \frac{5}{7}$

Since, n is an integer, therefore, there will be 142-14=128 three-digit natural numbers that will be divisible by 7 .

Therefore, there will be 128 three - digit natural numbers that will be divisible by 7 .

Q11

Given that $A B=12 \mathrm{~cm}, B C=8 \mathrm{~cm}$ and $A C=10 \mathrm{~cm}$.

Let, $A D=A F=p \mathrm{~cm}, \mathrm{BD}=\mathrm{BE}=\mathrm{qcm}$ and $\mathrm{CE}=\mathrm{CF}=\mathrm{rcm}$
(Tangents drawn from an external point to the circle are equal in length)

$$
\begin{aligned}
\Rightarrow & 2(p+q+r)=A B+B C+A C=A D+D B+B E+E C+A F+F C=30 \mathrm{~cm} \\
\Rightarrow & p+q+r=15 \\
& A B=A D+D B=p+q=12 \mathrm{~cm}
\end{aligned}
$$

Therefore, $\mathrm{r}=\mathrm{CF}=15-12=\mathbf{~} \mathbf{~ c m}$.
$A C=A F+F C=p+r=10 c m$
Therefore, $\mathrm{q}=\mathrm{BE}=15 \mathbf{- 1 0} \mathbf{= 5 \mathrm { cm }}$.
Therefore, $p=A D=p+q+r-r-q=15-3-5=7 \mathrm{~cm}$.
A

$D B$

Q12.
GIVEN : ABCD be a parallelogram circumscribing a circle with centre 0 .
TO PROVE: ABCD is a rhombus.

We know that the tangents drawn to a circle from an exterior point are equal in length.
Therefore, $\mathrm{AP}=\mathrm{AS}, \mathrm{BP}=\mathrm{BQ}, \mathrm{CR}=\mathrm{CQ}$ and $\mathrm{DR}=\mathrm{DS}$.
$A P+B P+C R+D R=A S+B Q+C Q+D S$
$(A P+B P)+(C R+D R)=(A S+D S)+(B Q+C Q)$
Therefore, $A B+C D=A D+B C$ or $2 A B=2 B C$ (Since, $A B=D C$ and $A D=B C$)
Therefore, $A B=B C=D C=A D$.
Therefore, $A B C D$ is a rhombus.
Hence, proved.

Q13

Let E denote the event that the drawn card is neither a king nor a queen.

Total number of possible cases $=52$.

Total number of cards that are king and those that are queen in the pack of playing cards $=4+4=8$.

Therefore, there are 52-8 = 44 cards that are neither a king nor a queen.
Total number of favorable cases $=44$.
\therefore Required probability $=P(E)=\frac{\text { Favourable number of cases }}{\text { Total number of cases }}=\frac{44}{52}=\frac{11}{13}$
Thus, the probability that the drawn card is neither a king nor a queen is $\frac{11}{13}$.

Q14

Dimension of the rectangular card board $=14 \mathrm{~cm} \times 7 \mathrm{~cm}$

Since, two circular pieces of equal radii and maximum area touching each other are cut from the rectangular card board, therefore, the diameter of each of each circular piece is $14 / 2=7 \mathrm{~cm}$.

14 cm
Radius of each circular piece $=\frac{7}{2} \mathrm{~cm}$.
\therefore Sum of area of two circular pieces $=2 \times \pi\left(\frac{7}{2}\right)^{2}=2 \times \frac{22}{7} \times \frac{49}{4}=77 \mathrm{~cm}^{2}$

Area of the remaining card board = Area of the card board - Area of two circular pieces
$=14 \mathrm{~cm} \times 7 \mathrm{~cm}-77 \mathrm{~cm}^{2}=98 \mathrm{~cm}^{2}-77 \mathrm{~cm}^{2}=21 \mathrm{~cm}^{2}$
Thus, the area of the remaining card board is $21 \mathrm{~cm}^{2}$.

Q15
The given quadratic equation is $k x(x-2)+6=0$.
This equation can be rewritten as $k x^{2}-2 k x+6=0$.

For equal roots, it discriminate, $\mathrm{D}=0$.

$$
\begin{aligned}
& \Rightarrow b^{2}-4 a c=0, \text { where } a=k, b=-2 k \text { and } c=6 \\
& \Rightarrow 4 k^{2}-24 k=0 \\
& \Rightarrow 4 k(k-6)=0 \\
& \Rightarrow K=0 \text { or } k=6
\end{aligned}
$$

But k cannot be 0 , so the value of k is 6 .

Q16
The AP is given as $18,15 \frac{1}{2}, 13, \ldots,-49 \frac{1}{2}$.
First term $\mathrm{a}=18$, common difference $\mathrm{d}=15 \frac{1}{2}-18=-2 \frac{1}{2}$ and the last term of the $\mathrm{AP}=-49 \frac{1}{2}$.

Let the AP has n terms.
$a_{n}=a+(n-1) d$
$-(99 / 2)=18-(5 / 2)(n-1)$
$5(n-1)=135$
$n=27+1$
$\mathrm{n}=28$
$\therefore \mathrm{n}=27+1=28$

Thus, the given AP has $\mathbf{2 8}$ terms.

Now, the sum of all the terms $\left(S_{n}\right)$ is given by,
$S_{n}=\frac{n}{2}\left[2 a+(n-1) d=\frac{28}{2}\left[2 \times 18+(28-1) \times\left(-\frac{5}{2}\right)\right]=14\left[36-27 \times \frac{5}{2}\right]=-441\right.$
Thus, the sum of all the terms of the AP is $\mathbf{- 4 4 1}$.

Step 1

Draw a line segment $A B=4 \mathrm{~cm}$. taking point A as centre, draw an arc of 5 cm radius.
Similarly, taking point B as its centre, draw an arc of 6 cm radius. These arcs will intersect each other at point C. Now, $A C=5 \mathrm{~cm}$ and $B C=6 \mathrm{~cm}$ and $\triangle A B C$ is the required triangle.

Step 2

Draw a ray AX making an acute angle with line AB on the opposite side of vertex C .

Step 3

Locate 3 points A_{1}, A_{2}, A_{3} (as 3 is greater between 2 and 3) on line $A X$ such that
$\mathrm{AA}_{1}=\mathrm{A}_{1} \mathrm{~A}_{2}=\mathrm{A}_{2} \mathrm{~A}_{3}$.

Step 4

Join $B A_{3}$ and draw a line through A_{2} parallel to $B A_{3}$ to intersect $A B$ at point B^{\prime}.

Step 5

Draw a line through B^{\prime} parallel to the line BC to intersect $A C$ at C^{\prime}.
$\triangle A B^{\prime} C^{\prime}$ is the required triangle.

Let $A B$ and $C D$ be two poles, where $C D=24 \mathrm{~m}$.
It is given that angle of depression of the top of the pole $A B$ as seen from the top of the pole $C D$ is 30° and horizontal distance between the two poles is 15 m .
$\therefore \angle \mathrm{CAL}=30^{\circ}$ and $\mathrm{BD}=15 \mathrm{~m}$.

To find: height of pole $A B$
Let the height of pole $A B$ be h m.
$A L=B D=15 \mathrm{~m}$ and $A B=L D=h$

Therefore, CL = CD $-\mathrm{LD}=24-\mathrm{h}$
Consider right $\triangle \mathrm{ACL}$:

$$
\begin{aligned}
\tan & \angle \mathrm{CAL}=\frac{\text { Perpendicular }}{\text { Base }}=\frac{\mathrm{CL}}{\mathrm{AL}} \\
& \Rightarrow \tan 30^{\circ}=\frac{24-\mathrm{h}}{15} \\
& \Rightarrow \frac{1}{\sqrt{3}}=\frac{24-\mathrm{h}}{15} \\
& \Rightarrow 24-\mathrm{h}=\frac{15}{\sqrt{3}} \\
& \Rightarrow 24-\mathrm{h}=5 \sqrt{3} \\
& \Rightarrow \mathrm{~h}=24-5 \sqrt{3} \\
& \Rightarrow \mathrm{~h}=24-5 \times 1.732 \text { [Taking } \sqrt{3}=1.732 \text {] } \\
& \Rightarrow \mathrm{h}=15.34
\end{aligned}
$$

Therefore, height of the pole $A B=h \mathrm{~m}=\mathbf{1 5 . 3 4} \mathrm{m}$.

Let the given points be $A(7,10) B(-2,5)$ and $C(3,-4)$.
Using distance formula, we have
$A B=\sqrt{(7+2)^{2}+(10-5)^{2}}=\sqrt{81+25}=\sqrt{106}$
$B C=\sqrt{(-2-3)^{2}+(5+4)^{2}}=\sqrt{25+81}=\sqrt{106}$
$C A=\sqrt{(7-3)^{2}+(10+4)^{2}}=\sqrt{16+196}=\sqrt{212}$
Since $A B=B C$, therefore, $\triangle A B C$ is an isosceles triangle.
Also, $\mathrm{AB}^{2}+\mathrm{BC}^{2}=106+106=212=\mathrm{AC}^{2}$
So, $\triangle \mathrm{ABC}$ is a right triangle right angled at $\angle \mathrm{B}$.
So, $\triangle \mathrm{ABC}$ is an isosceles triangle as well as a right triangle.
Thus, the points $(7,10),(-2,5)$ and $(3,-4)$ are the vertices of an isosceles right triangle.
Q20

Let the y-axis divide the line segment joining the points $(-4,-6)$ and $(10,12)$ in the ratio $\lambda: 1$ and the Point of the intersection be $(0, y)$.

So, by section formula, we have:
$\left(\frac{10 \lambda+(-4)}{\lambda+1}, \frac{12 \lambda+(-6)}{\lambda+1}\right)=(0, y)$
$\therefore \frac{10 \lambda-4}{\lambda+1}=0 \Rightarrow 10 \lambda-4=0$
$=>\lambda=\frac{4}{10}=\frac{2}{5}$
Therefore, $\mathrm{y}=\frac{12 \lambda+(-6)}{\lambda+1}=\frac{12 \times \frac{2}{5}-6}{\frac{2}{5}+1}=\frac{\left(\frac{24-30}{5}\right)}{\left(\frac{2+5}{5}\right)}=-\frac{6}{7}$
Thus, the y-axis divides the line segment joining the given points in the ratio $2: 5$ and the point of division is ($0,-\frac{6}{7}$).

Q21
$A B$ and $C D$ are the diameters of a circle with centre O.
Therefore, $\mathrm{OA}=\mathrm{OB}=\mathrm{OC}=\mathrm{OD}=7 \mathrm{~cm}$ (Radius of the circle)
Area of the shaded region
$=$ Area of the circle with diameter $O B+($ Area of the semi - circle ACDA - Area of $\triangle \mathrm{ACD})$
$=\pi\left(\frac{7}{2}\right)^{2}+\left(\frac{1}{2} * \pi *(7)^{2}-\frac{1}{2} * 14 \mathrm{~cm} * 7 \mathrm{~cm}\right)$
$=\frac{22}{7} \times \frac{49}{4} \mathrm{~cm}^{2}+\frac{1}{2} * \frac{22}{7} * 49 \mathrm{~cm}^{2}-\frac{1}{2} * 14 \mathrm{~cm} * 7 \mathrm{~cm}$
$=\frac{77}{2} \mathrm{~cm}^{2}+77 \mathrm{~cm}^{2}-49 \mathrm{~cm}^{2}$
$=66.5 \mathrm{~cm}^{2}$
Thus, the area of the shaded region is $66.5 \mathrm{~cm}^{2}$.
Q22

Let the radius and height of cylinder is rcm and hcm respectively.
Diameter of the hemisphere bowl $=14 \mathrm{~cm}$
\therefore Radius of the hemispherical bowl $=$ Radius of the cylinder $=r=\frac{14}{2} \mathrm{~cm}=7 \mathrm{~cm}$
Total height of the vessel $=13 \mathrm{~cm}$
\therefore Height of the cylinder, $\mathrm{h}=$ Total height of the vessel - Radius of the hemispherical bowl
$=13 \mathrm{~cm}-7 \mathrm{~cm}=6 \mathrm{~cm}$

Total surface area of the vessel $=2$ (curved surface area of the cylinder + curved surface area of the hemisphere) (Twice because the vessel is hollow)
$=2\left(2 \pi r h+2 \pi r^{2}\right)=4 \pi r(h+r)=4 \times \frac{22}{7} \times 7 \times(6+7) \mathrm{cm}^{2}$
$=1144 \mathrm{~cm}^{2}$
Thus, the total surface area of the vessel is $1144 \mathrm{~cm}^{2}$.
Q23

Height of the cylinder, $\mathrm{h}=10 \mathrm{~cm}$
Radius of the cylinder $=$ Radius of each hemisphere $=r=3.5 \mathrm{~cm}$
Volume of wood in the toy $=$ Volume of the cylinder $-2 \times$ Volume of each hemisphere
$=\pi r^{2} h-2 \times \frac{2}{3} \pi r^{3}$
$=\frac{22}{7} \times(3.5 \mathrm{~cm})^{2} \times 10 \mathrm{~cm}-\frac{4}{3} \times \frac{22}{7} \times(3.5 \mathrm{~cm})^{3}$
$=385 \mathrm{~cm}^{3}-\frac{539}{3} \mathrm{~cm}^{3}$
$=\frac{616}{3} \mathrm{~cm}^{3}$
$=205.33 \mathrm{~cm}^{3}$ (Approx)
Thus, the volume of the wood in the toy is approximately $205.33 \mathrm{~cm}^{3}$.
Q24
It is given that, radius $=21 \mathrm{~cm}$.
The Arc subtends an angle of 60°.
(i) length (I) of the arc is given by:360

$$
\begin{aligned}
& \mathrm{I}=\frac{\theta}{360^{0}} \times 2 \pi \mathrm{r}, \text { where } \mathrm{r}=21 \mathrm{~cm} \text { and } \theta=60^{\circ} \\
& =\frac{60}{360} * 2 * \frac{22}{7} * 21 \mathrm{~cm} \\
& =22 \mathrm{~cm}
\end{aligned}
$$

(ii) Area, A of the sector formed by the arc is given by

$$
\begin{aligned}
& A=\frac{\theta}{360^{0}} \times \pi \mathrm{r}^{2}, \text { where } \mathrm{r}=21 \mathrm{~cm} \text { and } \theta=60^{\circ} \\
& =\frac{60^{0}}{360^{0}} \times \frac{22}{7} \times 21 \times 21 \mathrm{~cm}^{2} \\
& =231 \mathrm{~cm}^{2}
\end{aligned}
$$

Q25

The given equation is $\frac{1}{2 a+b+2 x}=\frac{1}{2 a}+\frac{1}{b}+\frac{1}{2 x}$

$$
\begin{aligned}
& \frac{1}{2 a+b+2 x}=\frac{1}{2 a}+\frac{1}{b}+\frac{1}{2 x} \\
& \Rightarrow \frac{1}{2 a+b+2 x}-\frac{1}{2 x}=\frac{1}{2 a}+\frac{1}{b} \\
& \Rightarrow \frac{2 x-2 a-b-2 x}{2 x(2 a+b+2 x)}=\frac{b+2 a}{2 a b} \\
& \Rightarrow \frac{-2 a-b}{2 x(2 a+b+2 x)}=\frac{b+2 a}{2 a b} \\
& \Rightarrow \frac{-(2 a+b)}{2 x(2 a+b+2 x)}=\frac{b+2 a}{2 a b} \\
& \Rightarrow \frac{-1}{x(2 a+b+2 x)}=\frac{1}{a b} \\
& \Rightarrow 2 x^{2}+2 a x+b x+a b=0 \\
& \Rightarrow 2 x(x+a)+b(x+a)=0 \\
& \Rightarrow(x+a)(2 x+b)=0 \\
& \Rightarrow x+a=0 \text { or } 2 x+b=0 \\
& \Rightarrow x=-a, \text { or } x=\frac{-b}{2}
\end{aligned}
$$

Q26 let the sides of the two squares be $x \mathrm{~cm}$ and y cm where $\mathrm{x}>\mathrm{y}$.
Then, their areas are x^{2} and y^{2} and their perimeters are $4 x$ and $4 y$.
By the given condition, $x^{2}+y^{2}=400$ and $4 x-4 y=16$

$$
\begin{align*}
& 4 x-4 y=16 \Rightarrow 4(x-y)=16 \Rightarrow>-y=4 \\
\Rightarrow & x=y+4 \ldots(1) \tag{1}
\end{align*}
$$

Substituting the value of y from (1) in $x^{2}+y^{2}=400$, we get that $(y+4)^{2}+y^{2}=400$

$$
\begin{aligned}
& \Rightarrow y^{2}+16+8 y+y^{2}=400 \\
& \Rightarrow y^{2}+4 y-192=0 \\
& \Rightarrow y^{2}+16 y-12 y-192=0 \\
& \Rightarrow y(y+16)-12(y+16)=0 \\
& \Rightarrow(y+16)(y-12)=0 \\
& \Rightarrow y=-16 \text { or } y=12
\end{aligned}
$$

since, the value of y cannot be negative, the value of $\mathrm{y}=12$.
So, $x=y+4=12+4=16$
Thus, the sides of the two squares are 16 cm and 12 cm .
Q27
Given that, $\mathrm{S}_{7}=49$ and $\mathrm{S}_{17}=289$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$\therefore \mathrm{S}_{7}=49=\frac{7}{2}[2 a+(7-1) \mathrm{d}] \Rightarrow 49=\frac{7}{2}=(2 a+6 d)$
$\Rightarrow(a+3 d)=7$
Similarly, $\mathrm{S}_{17}=\frac{17}{2}[2 a+(17-1) \mathrm{d}]$

$$
\begin{array}{ll}
\Rightarrow & 289=\frac{17}{2}[2 a+16 d] \\
\Rightarrow & (a+8 d)=17 \ldots . . .(i i)
\end{array}
$$

Subtracting equation (i) from equation (ii), we get that $5 \mathrm{~d}=10$.
Therefore, the value of $d=2$ and $a=7-3 d=1$

$$
\begin{aligned}
& \therefore S_{n}=\frac{n}{2}[2 a+(n-1) d]=\frac{n}{2}[2(1)+(n-1)(2)] \\
& =\frac{n}{2}(2+2 n-2)=\frac{n}{2}(2 n)=n^{2}
\end{aligned}
$$

Therefore, the sum of \boldsymbol{n} terms of the AP is \mathbf{n}^{2}.

Q28

Given : A circle $C(0, r)$ and a tangent / at point A.
To prove: OA \perp I
Construction : take a point B, other than A , on the tangent I . Join OB . Suppose OB meets the circle in C .
Proof : we know that, among all line segment joining the point O to a point on I , the perpendicular is shortest tol.
$\mathrm{OA}=\mathrm{OC}$ (Radius of the same circle)
Now, $\mathrm{OB}=\mathrm{OC}+\mathrm{BC}$.
Therefore, $O B>O C$
$\Rightarrow O B>O A$
$\Rightarrow O A>O B$
B is an arbitrary point on the tangent I . thus, OA is shorter than any other line segment joining O to any point on I.

Hence, proved.
Q29
Given : I and m at are two parallel tangents to the circle with centre touching the circle at A and B respectively. DE is a tangent at the point C , which intersects I at D and m at E .

To prove: $\angle \mathrm{DOE}=90^{\circ}$
Construction : Join OC.
Proof :

In \triangle ODA and $\triangle O D C$,
$\mathrm{OA}=\mathrm{OC}$ (Radii of the same circle)
$A D=D C$ (Length of tangents drawn from an external point to a circle are equal)
DO = OD (Common side)
$\triangle O D A \cong \triangle O D C$ (SSS congruence criterion)
$\therefore \angle \mathrm{DOA}=\angle \mathrm{COD} . . .(1)$ (C.P.C.T)
Similarly, $\triangle \mathrm{OEB} \cong \triangle \mathrm{OEC}$
$\angle \mathrm{EOB}=\angle \mathrm{COE} . . .(2)$
$A O B$ is a diameter of the circle. Hence, it is a straight line.
$\therefore \angle \mathrm{DOA}+\angle \mathrm{COD}+\angle \mathrm{COE}+\angle \mathrm{EOB}=180^{\circ}$
From (1) and (2), we have
$2 \angle \mathrm{COD}+2 \angle \mathrm{COE}=180^{\circ}$
$\Rightarrow \angle C O D+\angle C O E=90^{\circ}$
$\Rightarrow \angle D O E=90^{\circ}$
Hence, proved.
Q30
Let $A B$ be the building and $C D$ be the tower. Suppose the height of the building be h m .
Given, $\angle A C B=30^{\circ}, \angle C B D=60^{\circ}$ and $C D=60 \mathrm{~m}$
In right $\triangle B C D$:
$\cot 60^{\circ}=\frac{B C}{C D} \Rightarrow>B C=C D \cot 60^{\circ}$

$$
\begin{equation*}
\Rightarrow \quad B C=60 m * \frac{1}{\sqrt{3}} \Rightarrow B C=\frac{60}{\sqrt{3}} m=\frac{60 \sqrt{3}}{3} m=20 \sqrt{3} m \tag{1}
\end{equation*}
$$

In right $\triangle A C B$:
$\tan 30^{\circ}=\frac{\mathrm{AB}}{\mathrm{BC}}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{h}{20 \sqrt{3}} \quad($ Using (1))
$\Rightarrow h=20 \mathrm{~m}$

Thus, the height of the building is $\mathbf{2 0} \mathbf{~ m}$.

Q31

Since the group consists of 12 persons, sample space consists of 12 persons.
\therefore Total number of possible outcomes $=12$

Let A denote event of selecting persons which are extremely patient
\therefore Number of outcomes favorable to A is 3 .

Let B denote event of selecting persons which are extremely kind or honest.

Number of persons which are extremely honest is 6.

Number of persons which are extremely kind is $12-(6+3)=3$
\therefore Number of outcomes favorable to $B=6+3=9$.
(i) Probability of selecting a person who is extremely patient is given by $\mathrm{P}(\mathrm{A})$.

$$
\mathrm{P}(\mathrm{~A})=\frac{\text { Number of outcomes favourable to } \mathrm{A}}{\text { Total number of possible outcomes }}=\frac{3}{12}=\frac{1}{4} .
$$

(ii) Probability of selecting a person who is extremely kind or honest is given by $P(B)$

$$
\mathrm{P}(\mathrm{~B})=\frac{\text { Number of outcomes favourable to } \mathrm{B}}{\text { Total number of possible outcomes }}=\frac{9}{12}=\frac{3}{4}
$$

The three vertices of the parallelogram ABCD are $\mathrm{A}(3,-4), \mathrm{B}(-1,-3)$ and $\mathrm{C}(-6,2)$.
Let the coordinates of the vertex D be (x, y)
It is known that in a parallelogram, the diagonals bisect each other.
\therefore Mid point of $A C=$ Mid point of $B D$
$\Rightarrow\left(\frac{3-6}{2}, \frac{-4+2}{2}\right)=\left(\frac{-1+x}{2}, \frac{-3+y}{2}\right)$
$\Rightarrow\left(-\frac{3}{2},-\frac{2}{2}\right)=\left(\frac{-1+x}{2}, \frac{-3+y}{2}\right)$
$\Rightarrow \quad-\frac{3}{2}=\frac{-1+x}{2},-\frac{2}{2}=\frac{-3+y}{2}$
$\Rightarrow x=-2, y=1$
So, the coordinates of the vertex D is $(-2,1)$.
Now, area of parallelogram ABCD
$=$ area of triangle $A B C+$ area of triangle $A C D$
$=2 \times$ area of triangle ABC [Diagonal divides the parallelogram into two triangles of equal area]
The area of a triangle whose vertices are $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ is given by the numerical value of the expression $\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$

Area of triangle $\mathrm{ABC}=\frac{1}{2}[3(-3-2)+(-1)\{2-(-4)\}+(-6)\{-4-(-3)\}]$
$=\frac{1}{2}[3 *(-5)+(-1) * 6+(-6) *(-1)]=\frac{1}{2}[-15-6+6]=-\frac{15}{2}$
\therefore Area of triangle $\mathrm{ABC}=\frac{15}{2}$ sq units (Area of the triangle cannot be negative)
Thus, the area of parallelogram $A B C D=2 * \frac{15}{2}=15$ sq units.

Q33

Diameter of circular end of pipe $=2 \mathrm{~cm}$
\therefore Radius $\left(r_{1}\right)$ of circular end of pipe $=\frac{2}{200} \mathrm{~m}=0.01 \mathrm{~m}$.
Area of cross-section $=\pi * r_{1}^{2}=\pi \times(0.01)^{2}=0.0001 \pi \mathrm{~m}^{2}$
Speed of water $=0.4 \mathrm{~m} / \mathrm{s}=0.4 * 60=24 \mathrm{metre} / \mathrm{min}$
Volume of water that flows in 1 minute from pipe $=24 \times 0.0001 \pi \mathrm{~m}^{3}=0.0024 \pi \mathrm{~m}^{3}$

Volume of water that flows in 30 minute from pipe $=30 \times 0.0024 \pi \mathrm{~m}^{3}=0.072 \pi \mathrm{~m}^{3}$
Radius (r_{2}) of base of cylindrical tank $=40 \mathrm{~cm}=0.4 \mathrm{~m}$
Let the cylindrical tank be filled up to h m in 30 minutes.
Volume of water filled in tank in 30 minutes is equal to the volume of water flowed in 30 minutes from the pipe.

$$
\begin{aligned}
& \therefore \pi^{*}\left(\mathrm{r}_{2}\right)^{2} \times \mathrm{h}=0.072 \pi \\
& \Rightarrow(0.4) 2 * \mathrm{~h}=0.072 \\
& \Rightarrow 0.16 * \mathrm{~h}=0.072 \\
& \mathrm{~h}=\frac{0.072}{0.16} \\
& \Rightarrow \mathrm{~h}=0.45 \mathrm{~m}=45 \mathrm{~cm}
\end{aligned}
$$

Therefore, the rise in level of water in the tank in half an hour is 45 cm .

Q34

Diameter of upper end of bucket $=30 \mathrm{~cm}$
\therefore Radius $\left(r_{1}\right)$ of upper end of bucket $=15 \mathrm{~cm}$
Diameter of lower end of bucket $=10 \mathrm{~cm}$
\therefore Radius $\left(\mathrm{r}_{2}\right)$ of lower end of bucket $=5 \mathrm{~cm}$
Height (h) of bucket $=24 \mathrm{~cm}$
Slant height (I) of frustum $=\sqrt{\left(r_{1}-r_{2}\right)^{2}+h^{2}}$
$=\sqrt{(15-5)^{2}+(24)^{2}}=\sqrt{(10)^{2}+(24)^{2}}=\sqrt{100+576}$
$=\sqrt{676}=26 \mathrm{~cm}$

Area of metal sheet used to make the bucket $=\pi\left(\mathrm{r}_{1}+\mathrm{r}_{2}\right) I+\pi r_{2}^{2}=\pi(15+5) 26+\pi(5)^{2}$ $=520 \pi+25 \pi=545 \pi \mathrm{~cm}^{2}$

Cost of $100 \mathrm{~cm}^{2}$ metal sheet $=$ Rs 10
Cost of $545 \pi \mathrm{~cm}^{2}$ metal sheet $=\operatorname{Rs} \frac{545 \times 3.14 \times 10}{100}=$ Rs. 171.13
Therefore, cost of metal sheet used to make the bucket is Rs $\mathbf{1 7 1 . 1 3}$.

