CBSE Class 10 Maths Question Paper Solution 2010

QUESTION PAPER CODE 30/1/1

EXPECTED ANSWERS/VALUE POINTS

SECTION - A

1.	Terminating		2. $x^2 - 6x + 4$	3 . d = 2a		Marks	
						$1 \times 10 = 10m$	
4.	1:9		5. 5cm	6. $\frac{1}{3}$			
7.	p = 3		8. (3.5)	9.48cm ²			
10.	$\frac{3}{26}$		2		1		
SECTION - B							

11.
$$p(x) = x^{3} - 4x^{2} - 3x + 12$$

$$\sqrt{3} \text{ and } -\sqrt{3} \text{ are zeroes of } p(x) \implies (x^{2} - 3) \text{ is a factor of } p(x)$$

$$(x^{3} - 3x - 4x^{2} + 12) \div (x^{2} - 3) = x - 4$$

$$\lim_{x \to x} x = 4 \text{ is the third zero of } p(x)$$

$$\frac{1}{2} m$$

12. For a pair of linear equations to have infinitely

many solutions :

$$\frac{\mathbf{a}_1}{\mathbf{a}_2} = \frac{\mathbf{b}_1}{\mathbf{b}_2} = \frac{\mathbf{c}_1}{\mathbf{c}_2}$$

$$\therefore \ \frac{2}{k-1} = \frac{3}{k+2} = \frac{7}{3k}$$

From (i) and (ii) getting k = 7

k = 7 satisfies (ii) and (iii) and (i) and (iii) also

∴ k = 7

1/2 in

Im

½m

13. Here a = 2, $\ell = 29$ and $s_n = 155$

$$\therefore 155 = \frac{n}{2} \left[2 + 29 \right] \implies n = 10$$

Also,
$$29 = 2 + (10 - 1) d \implies d = 3$$

 \therefore Common difference = 3

14.

with centre O $\therefore AB + CD = BC + AD$ [$\therefore AQ = AP, BQ = BR, CR = CS, PD = DS$] ^{1/2} m As ABCD is a parallelogram $\Rightarrow AB = DC$ and BC = AD 2AB = 2AD or AB = AD 1 m

As parallelogram ABCD circumscribes a circle

: ABCD is a rhombus (As AB = BC = CD = AD) $\frac{1}{2} m$

15.
$$\sec(90^\circ - \theta) = \csc \theta$$
, $\tan(90^\circ - \theta) = \cot \theta$, $\cos 65^\circ = \sin 25^\circ$
and $\tan 63^\circ = \cot 27^\circ$

: Given expression becomes

$$\frac{\left(\csc^{2}\theta - \cot^{2}\theta\right) + \left(\cos^{2}25^{\circ} + \sin^{2}25^{\circ}\right)}{3\tan 27^{\circ}\cot 27^{\circ}} = \frac{1+1}{3} = \frac{2}{3}$$

OR

correct Fig. ¹/₂ m

Draw rt .
$$\triangle$$
 OBA, in which \angle BOA = 30°
Take OA = 2a . Replicate \triangle OCB on
the other side of OB $\Rightarrow \angle$ AOC = 60°
and OC = 2a

 $\therefore \Delta AOC$ is equilateral Δ and AB = a

https://toppersacademy.app

3

1 m

SECTION-C

16. Let $2-3\sqrt{5} = x$, where x is a rational number	$^{1}\!/_{2}\mathrm{m}$
:. $2-x = 3\sqrt{5}$ or $\frac{2-x}{3} = \sqrt{5}$ (i)	$1/_{2}$ m
As x is a rational number, so is $\frac{2-x}{3}$	1 m
: LHS of (i) is rational but RHS of (i) is irrational	
\therefore Our supposition that x is rational is wrong	
$\Rightarrow 2 - 3\sqrt{5}$ is irrational CADEMY APP	l m
17. Let the fraction be $\frac{x}{y}$, $y \neq 0$	
$\therefore \text{According to the question } x + y = 2y - 3$	1 m
or $x = y - 3$ (i)	
Also, $\frac{x-1}{y-1} = \frac{1}{2} \implies 2x - y = 1$ (ii)	1 m
From (i) and (ii), $x = 4, y = 7$	
\therefore Required fraction = $\frac{4}{7}$	1 m
OR	
$\frac{4}{x} + 3y = 8$ (i), $\frac{6}{x} - 4y = -5$ (ii)	
(i) $\times 3 \implies \frac{12}{x} + 9y = 24$ and (ii) $\times 2 \implies \frac{12}{x} - 8y = -10$	1½ m
Solving to get $y = 2$ and $x = 2$	1½ m

18.
$$S_{10} = -150 \text{ and } S_{20} = -(150+550) = -700$$

 $\therefore -150 = 5 (2a + 9d) \text{ and } -700 = 10 (2a + 19d)$
 $\Rightarrow 2a + 9d = -30 \text{ and } 2a + 19d = -70$
 $\Rightarrow d = -4 \text{ and } a = 3$
 $\therefore A \cdot P \text{ is } 3, -1, -5, \dots$
19. $AB^2 = AC^2 + BC^2 \dots$ (i) and $AD^2 = AC^2 + DC^2$
 $= AC^2 + \frac{BC^2}{4} \left(\because DC = \frac{1}{2}BC\right)$
 $1 + \frac{1}{2}m$

or
$$4 \text{ AD}^2 = 4 \text{ AC}^2 + \text{BC}^2$$
.....(ii)
From (i) and (ii), $AB^2 = AC^2 + 4 \text{ AD}^2 - 4 \text{ AC}^2$
or $AB^2 = 4 \text{ AD}^2 - 3 \text{ AC}^2$

20. The given expression can be written as

$$\frac{\sin A}{1 - \frac{\cos A}{\sin A}} + \frac{1}{\frac{\sin A}{\cos A} \left(1 - \frac{\sin A}{\cos A}\right)}$$
1 m

$$= \frac{\sin^2 A}{\cos A (\sin A - \cos A)} + \frac{\cos^2 A}{\sin A (\cos A - \sin A)}$$
^{1/2}m

$$= \frac{\sin^3 A - \cos^3 A}{\sin A \cos A (\sin A - \cos A)} = \frac{\sin^2 A + \cos^2 A + \sin A \cos A}{\sin A \cos A}$$
 1 m

$$= \tan A + \cot A + 1$$

OR

https://toppersacademy.app

LHS =
$$\left(\frac{1}{\sin A} - \sin A\right) \left(\frac{1}{\cos A} - \cos A\right)$$

= $\frac{1 - \sin^2 A}{\sin A} \cdot \frac{1 - \cos^2 A}{\cos A} = \frac{\cos^2 A}{\sin A} \cdot \frac{\sin^2 A}{\cos A} = \sin A \cos A$ 1½ m
= $\frac{\sin A \cos A}{\sin^2 A + \cos^2 A} = \frac{1}{\frac{\sin^2 A}{\sin A \cos A} + \frac{\cos^2 A}{\sin A \cos A}} = \frac{1}{\tan A + \cot A} = \text{RHS}$ 1 m

1 m

2m

21. Correct construction of triangle Δ ABC

Correct construction of triangle similar to Δ ABC

22.
$$\frac{AP}{AB} = \frac{1}{3} \implies \frac{AP}{PB} = \frac{1}{2}$$

$$\frac{P(x, y)}{A(2, 1)}$$

$$x = \frac{4+5}{3} = 3, y = \frac{-8+2}{3} = -2 \implies P(3, -2)$$

$$P \text{ lies on } 2x - y + k = 0 \implies 6+2+k=0 \implies k=-8$$

$$I \text{ m}$$
23.
$$\frac{P(a, b)}{P(a, b)}$$

$$R(x, y) \longrightarrow Q(b, a)$$

$$If P, R, Q \text{ are collinear, ar } (\Delta PRQ) = 0$$

$$\therefore a(y-a) + x(a-b) + b(b-y) = 0$$

$$\text{ or } ay - a^2 + ax - bx + b^2 - by = 0$$

$$\text{ or, } (a-b) (x+y) = a^2 - b^2$$

$$I \text{ m}$$

24.
Area of semi-circle I =
$$\frac{1}{2} \times \frac{22}{7} \times 7 \times 7 \text{ cm}$$

= 77 cm²
Area of semi-circle II = $\frac{1}{2} \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times \frac{7}{2} \text{ cm}^2$
= $\frac{77}{4} \text{ cm}^2$
 $= \frac{77}{4} \text{ cm}^2$
 $= \frac{77}{4} \text{ cm}^2$
 $= \frac{77}{8} \text{ cm}^2$
Im
 \therefore Area of shaded region = $77\left[\frac{1}{4} - \frac{1}{8} + 1\right] \text{ cm}^2$
 $Area of shaded region = $77\left[\frac{1}{4} - \frac{1}{8} + 1\right] \text{ cm}^2$
 $AB^2 = AC^2 + BC^2$ (as $\angle ACB = 90^\circ$)
 $= 24^2 + 10^2 = 26^2 \implies AB = 26 \text{ cm}$
 \therefore Area of semi-circle ACBOA = $\left(\frac{1}{2} \times 3.14 \times 13 \times 13\right) \text{ cm}^2$
 \therefore Area of shaded region = $\left[\left(\frac{1}{2} \times 3.14 \times 13 \times 13\right) - 120\right] \text{ cm}^2$
 \therefore Area of shaded region = $\left[\left(\frac{1}{2} \times 3.14 \times 13 \times 13\right) - 120\right] \text{ cm}^2$
 $= (265.33 - 120) \text{ or } 145.33 \text{ cm}^2$$

https://toppersacademy.app

Total number of cards = 1825.

(i) Prime numbers less than 15 are 3, 5, 7, 11, 13 – Five in number

$\therefore P (a prime no. less than 15) = \frac{5}{18}$	1m
umbers divisible by 3 and 5 is only 15 (one in number)	¹ / ₂ m

(ii) numbers divisible by 3 and 5 is only 15 (one in number)

$$\therefore P(a \text{ no. divisible by 3 and 5}) = \frac{1}{18}$$

SECTION D

Let the three consecutive numbers be x, x + 1, x + 226.

According to the question

$$x^2 + (x+1)(x+2) = 46$$

or
$$2x^2 + 3x - 44 = 0 \implies 2x^2 + 11x - 8x - 44 = 0$$
 2 m

$$\Rightarrow (x-4)(2x+11) = 0 \qquad 1 \text{ m}$$

As x is positive
$$\Rightarrow x = 4\left(x = \frac{-11}{2} \text{ rejected}\right)$$
 1 m

 \therefore The numbers are 4, 5, 6

OR

Let the two numbers be *x*, *y* where x > y

$$\therefore x^2 - y^2 = 88$$
(i)

Also, x = 2y - 5(ii)

From (i) and (ii), $(2y-5)^2 - y^2 = 88$

$$\Rightarrow 3y^2 - 20y - 63 = 0 \qquad 1 \text{ m}$$

or
$$3y^2 - 27y + 7y - 63 = 0 \implies (3y + 7)(y - 9) = 0$$

$$\Rightarrow$$
 y = 9, -7/3 1 m

$$x = 2y - 5 = 13$$
 or $x = -\frac{29}{3}$

https://toppersacademy.app

1 m

 $\frac{1}{2}$ m

 $2 \,\mathrm{m}$

1 m

1 m

:. The numbers are 13, 9 (Rejecting $x = \frac{-29}{3}$

and $y = -\frac{7}{3}$)

27. Correctly stated Given, To Prove, Construction and correct Figure $\left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}\right)$ 2 m Correct Proof 2 m

Let ABC and PQR be two similar triangles

$$\frac{\operatorname{ar}(\operatorname{ABC})}{\operatorname{ar}(\operatorname{PQR})} = \frac{\operatorname{AB}^2}{\operatorname{PQ}^2} = \frac{\operatorname{BC}^2}{\operatorname{QR}^2} = \frac{\operatorname{AC}^2}{\operatorname{PR}^2} = 1 \implies \frac{\operatorname{AB} = \operatorname{PQ}}{\operatorname{BC} = \operatorname{QR}, \operatorname{AC} = \operatorname{PR}}$$

$$1\frac{1}{2} \operatorname{m}$$

$$\therefore \Delta ABC \cong \Delta PQR (by SSS) \qquad \frac{1}{2} m$$

Let CD be the building and AB, the tower

Correct Figure

Writing trigonometric equations

(i)
$$\frac{7}{y} = \tan 30^\circ = \frac{1}{\sqrt{3}} \implies y = 7\sqrt{3}$$

= 12.124 m 1¹/₂ m

(ii)
$$\frac{x}{y} = \tan 60^\circ = \sqrt{3}$$
 1¹/₂ m

or
$$\frac{x}{7\sqrt{3}} = \sqrt{3} \implies x = 21$$
 1 m

7

$$\therefore$$
 Height of tower = $(21 + 7)$ m or 28 m

Volume of bucket =
$$10459 \frac{3}{7} \text{ cm}^3$$

= $\frac{73216}{7} \text{ cm}^3$

28.

29.

1/2 m

1m

$$\therefore \quad \frac{73216}{7} = \frac{1}{3} \times \frac{22}{7} \times h \left[20^2 + 8^2 + 20 \times 8 \right]$$

$$\therefore h = \frac{73216}{7} \times \frac{21}{22} \times \frac{1}{624} = 16 \text{ cm} \qquad \text{Im}$$
$$\ell^2 = h^2 + (r_2 - r_1)^2 = 16^2 + (20 - 8)^2$$
$$= 400$$
$$\Rightarrow \ell = 20 \text{ cm} \qquad \text{Im}$$

Total surface area of metal sheet used

$$= \frac{22}{7} \times 20 \times (20+8) + \frac{22}{7} (8)^{2} \text{ cm}^{2}$$

$$= \left(1760 + \frac{1408}{7}\right) \text{ cm}^{2}$$

$$\therefore \text{ Cost of metal sheet} = \text{Rs}\left(1760 + \frac{1408}{7}\right) \frac{14}{10}$$

OR

Volume of hemisphere = $\frac{2}{3} \times \frac{22}{7} \times (21)^3 \text{ cm}^3$ 1 m

:. Volume of cone =
$$\left(\frac{2}{3} \cdot \frac{2}{3} \quad \frac{22}{7} \times 21 \times 21 \times 21\right)$$
 cm³

$$= \frac{1}{.3} \times \frac{22}{.7} \times (21)^2 \times h \qquad 1\frac{1}{2} m$$

$$\Rightarrow h = \frac{2 \times 2 \times 22 \times 7 \times 21}{22 \times 21} = 28 \text{ cm} \qquad 1 \text{ m}$$

$$\therefore \ \ell^2 = h^2 + r^2 = 28^2 + 21^2 = 1225 = (35)^2$$

 $\Rightarrow \ell = 35 \,\mathrm{cm}$

1 m

1 m

https://toppersacademy.app 10

Surface area of toy = $2 \lambda r^2 + \lambda r \ell$

1/2 m

$$= \left(2 \times \frac{22}{7} \times 21 \times 21 + \frac{22}{7} \times 21 \times 35\right) \text{ cm}^2 \qquad 1\frac{1}{2} \text{ m}^2$$

 $= 5082 \text{ cm}^2$

30.	Classes	0-10	10-20	20-30	30-40	40-50	50-60	60-70	
	class marks (x_i)	5	15	25	35	45	55	65	
	$d_i = \frac{x_i - 35}{10}$	-3	-2	-1	0	1	2	3	
	f _i	4	4	7	10	12	8	5	
	$f_i d_i$	-12	-8	-7	0	12	16	15	

$$\sum f_i = 50, \ \sum f_i d_i = 16$$
 1 m

(i)
$$\overline{x} = 35 + \frac{16}{50} \times 10 = 38.2$$
 1 m

(ii) Modal Class =
$$40 - 50$$

Mode = $40 + \frac{12 - 10}{24 - 18} \times 10 = 43.33$ 1^{1/2} m

(iii) Median Class = 30 - 40

Median =
$$30 + \frac{\frac{50}{2} - 15}{10} \times 10 = 40.00$$
 1¹/₂ m

Note : If a candidate finds any two of the measures of central tendency correctly and finds the third correctly using Empirical formula, give full credit