QUESTION PAPER CODE 30/1/1
 EXPECTED ANSWER/VALUE POINTS
 SECTION - A

Q. No. 1 to 10 are multiple choice type question of 1 mark each.

Select the correct option.
Q.No.

1. If one of the zeroes of the quadratic polynomial $x^{2}+3 x+k$ is 2 , then the value of k is
(a) 10
(b) -10
(c) -7
(d) -2

Ans: (b) -10
2. The total number of factors of a prime number is
(a) 1
(b) 0
(c) 2
(d) 3

Ans: (c) 2
3. The quadratic polynomial, the sum of whose zeroes is -5 and their product is 6 , is
(a) $x^{2}+5 x+6$
(b) $x^{2}-5 x+6$
(c) $\mathrm{x}^{2}-5 \mathrm{x}-6$
(d) $-x^{2}+5 x+6$

Ans: (a) $x^{2}+5 x+6$
4. The value of k for which the system of equations $x+y-4=0$ and $2 x+k y=3$ has no solution, is
(a) -2
(b) $\neq 2$
(c) 3
(d) 2

Ans: (d) 2
5. The HCF and the LCM of $12,21,15$ respectively are
(a) 3,140
(b) 12,420
(c) 3,420
(d) 420,3

Ans: (c) 3,420
6. The value of x for which $2 x,(x+10)$ and $(3 x+2)$ are the three consecutive terms of an AP, is
(a) 6
(b) -6
(c) 18
(d) -18

Ans: (a) 6
7. The first term of an $A P$ is p and the common difference is q, then its $10^{\text {th }}$ term is
(a) $q+9 p$
(b) $p-9 q$
(c) $\mathrm{p}+9 \mathrm{q}$
(d) $2 p+9 q$

Ans: (c) $p+9 q$
8. The distance between the points $(a \cos \theta+b \sin \theta, 0)$ and $(0, a \sin \theta-b \cos \theta)$, is
(a) $a^{2}+b^{2}$
(b) $a^{2}-b^{2}$
(c) $\sqrt{a^{2}+b^{2}}$
(d) $\sqrt{a^{2}-b^{2}}$

Ans: (c) $\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}$
9. If the point $\mathrm{P}(\mathrm{k}, 0)$ divides the line segment joining the points $\mathrm{A}(2,-2)$ and $\mathrm{B}(-7,4)$ in the ratio $1: 2$, then the value of k is,
(a) 1
(b) 2
(c) -2
(d) -1

Ans: (d) -1
10. The value of p, for which the points $A(3,1), B(5, p)$ and $C(7,-5)$ are collinear, is
(a) -2
(b) 2
(c) -1
(d) 1

Ans: (a) -2

In Q. Nos. 11 to 15, fill in the blanks. Each question is of 1 mark.
11. In Fig. 1, $\triangle \mathrm{ABC}$ is circumscribing a circle, the length of BC is \qquad cm.

Fig. 1

Ans: 10
1

1
17. Two cones have their heights in the ratio $1: 3$ and radii in the ratio $3: 1$. What is the ratio of their volumes?
Ans: $\frac{\mathrm{r}_{1}}{\mathrm{r}_{2}}=\frac{3}{1}, \frac{\mathrm{~h}_{1}}{\mathrm{~h}_{2}}=\frac{1}{3}$
12. Given $\Delta \mathrm{ABC} \sim \Delta \mathrm{PQR}$, if $\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{1}{3}$, then $\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\Delta \mathrm{PQR})}=$ \qquad $-$
Ans: $\frac{1}{9}$
13. $A B C$ is an equilateral triangle of side $2 a$, then length of one of its altitude is \qquad .
Ans: $\sqrt{3} \mathrm{a}$
14. $\frac{\cos 80^{\circ}}{\sin 10^{\circ}}+\cos 59^{\circ} \operatorname{cosec} 31^{\circ}=$

Ans: 2
15. The value of $\left(\sin ^{2} \theta+\frac{1}{1+\tan ^{2} \theta}\right)=$ \qquad .
Ans: 1

OR

The value of $\left(1+\tan ^{2} \theta\right)(1-\sin \theta)(1+\sin \theta)=$ \qquad .
Ans: 1
Q. Nos. 16 to 20 are short answer type questions of 1 mark each.
16. The ratio of the length of a vertical rod and the length of its shadow is $1: \sqrt{3}$. Find the angle of elevation of the sun at that moment?

Ans: $\tan \theta=\frac{1}{\sqrt{3}} \Rightarrow \theta=30^{\circ}$

$$
\therefore \text { Ratio of volumes }=\frac{\frac{1}{3} \pi r_{1}^{2} h_{1}}{\frac{1}{3} \pi r_{2}^{2} h_{2}}=3: 1
$$

18. A letter of English alphabet is chosen at random. What is the probability that the chosen letter is a consonant.
Ans: P (consonant) $=\frac{21}{26}$
19. A die is thrown once. What is the probability of getting a number less than 3 ?

Ans: $\mathrm{P}($ number less than 3$)=\frac{2}{6}$ or $\frac{1}{3}$

OR

If the probability of winning a game is 0.07 , what is the probability of losing it?
Ans: $\mathrm{P}($ losing $)=1-0.07$
$=0.93$
20. If the mean of first n natural number is 15 , then find n.

Ans: $\frac{\frac{\mathrm{n}(\mathrm{n}+1)}{2}}{\mathrm{n}}=15$

$$
\therefore \mathrm{n}=29
$$

SECTION - B

Q. Nos. 21 to 26 carry 2 marks each.

21. Show that $(a-b)^{2},\left(a^{2}+b^{2}\right)$ and $(a+b)^{2}$ are in $A P$.

Ans: $\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)-(\mathrm{a}-\mathrm{b})^{2}=2 \mathrm{ab}$

$$
(a+b)^{2}-\left(a^{2}+b^{2}\right)=2 a b
$$

Common difference is same. \therefore given terms are in AP
22. In Fig. $2 \mathrm{DE} \| \mathrm{AC}$ and $\mathrm{DC} \| \mathrm{AP}$. Prove that $\frac{\mathrm{BE}}{\mathrm{EC}}=\frac{\mathrm{BC}}{\mathrm{CP}}$.

Fig 2
Ans: In $\triangle \mathrm{ABC}, \mathrm{DE} \| \mathrm{AC}, \therefore \frac{\mathrm{BD}}{\mathrm{DA}}=\frac{\mathrm{BE}}{\mathrm{EC}}$
In $\triangle \mathrm{ABP}, \mathrm{DC} \| \mathrm{AP}, \therefore \frac{\mathrm{BD}}{\mathrm{DA}}=\frac{\mathrm{BC}}{\mathrm{CP}}$
From (i) \& (ii), $\frac{\mathrm{BE}}{\mathrm{EC}}=\frac{\mathrm{BC}}{\mathrm{CP}}$

In Fig. 3, two tangents TP and TQ are drawn to a circle with centre O from an external point T. Prove that $\angle \mathrm{PTQ}=2 \angle \mathrm{OPQ}$.

Ans: Let $\angle \mathrm{OPQ}=\theta$
$\therefore \angle \mathrm{TPQ}=\angle \mathrm{TQP}=90^{\circ}-\theta$
In $\triangle \mathrm{TPQ}, 2\left(90^{\circ}-\theta\right)+\angle \mathrm{PTQ}=180^{\circ}$

$$
\begin{aligned}
\therefore \angle \mathrm{PTQ} & =2 \theta \\
& =2 \angle \mathrm{OPQ}
\end{aligned}
$$

23. The rod AC of a TV disc antenna is fixed at right angle to the wall AB and a rod CD is supporting the disc as shown in Fig. 4. If $\mathrm{AC}=1.5 \mathrm{~m}$ long and $C D=3 \mathrm{~m}$, find (i) $\tan \theta$ (ii) $\sec \theta+\operatorname{cosec} \theta$.

Ans: $\frac{\mathrm{AC}}{\mathrm{CD}}=\sin \theta \Rightarrow \sin \theta=\frac{1}{2} \Rightarrow \theta=30^{\circ}$
(i) $\tan \theta=\tan 30^{\circ}=\frac{1}{\sqrt{3}}$

(ii) $\sec \theta+\operatorname{cosec} \theta=\sec 30^{\circ}+\operatorname{cosec} 30^{\circ}$

$$
=\frac{2}{\sqrt{3}}+2 \text { or } \frac{2(3+\sqrt{3})}{3}
$$

24. A piece of wire 22 cm long is bent into the form of an arc of circle subtending an angle of 60° at its centre. Find the radius of the circle.
(Use $\pi=\frac{22}{7}$)
Ans: $\quad 2 \times \frac{22}{7} \times r \times \frac{60^{\circ}}{360^{\circ}}=22$
$\therefore \mathrm{r}=21 \mathrm{~cm}$
25. If a number x is chosen at random from the numbers $-3,-2,-1,0,1,2,3$.

What is the probability that $x^{2} \leq 4$?
Ans: Total number of outcomes $=7$
Favourable outcomes are $-2,-1,0,1,2$, i.e., 5
$\therefore \quad \mathrm{P}\left(\mathrm{x}^{2} \leq 4\right)=\frac{5}{7}$
26.

Find the mean of the following distribution:

Class:	$3-5$	$5-7$	$7-9$	$9-11$	$11-13$
Frequency:	5	10	10	7	8

Ans:

Classes	$\mathbf{x}_{\mathbf{i}}$	$\mathbf{f}_{\mathbf{i}}$	$\mathbf{f}_{\mathbf{x}} \mathbf{x}_{\mathbf{i}}$
$3-5$	4	5	20
$5-7$	6	10	60
$7-9$	8	10	80
$9-11$	10	7	70
$11-13$	12	8	96
Total		40	326

$$
\overline{\mathrm{x}}=\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}=\frac{326}{40}=8.15
$$

OR

Find the mode of the following data:

Class:	$0-20$	$20-40$	$40-60$	$60-80$	$80-100$	$110-120$	$120-140$
Frequency:	6	8	10	12	6	5	3

Ans: Modal class : 60-80

$$
\begin{aligned}
\text { Mode } & =\ell+\frac{\mathrm{f}_{1}-\mathrm{f}_{0}}{2 \mathrm{f}_{1}-\mathrm{f}_{0}-\mathrm{f}_{2}} \times \mathrm{h}=60+\frac{12-10}{24-10-6} \times 20 \\
& =60+5=65
\end{aligned}
$$

SECTION - C
 SECTION - C

Question numbers 27 to $\mathbf{3 4}$ carry 3 marks each.

27. Find the quadratic polynomial whose zeroes are reciprocal of the zeroes of the polynomial $\mathrm{f}(\mathrm{x})=\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}, \mathrm{a} \neq 0, \mathrm{c} \neq 0$.
Ans: $\mathrm{f}(\mathrm{x})=\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$

New sum of zeroes $=\frac{1}{\alpha}+\frac{1}{\beta}=-\frac{b}{c}$
New product of zeroes $=\frac{1}{\alpha} \times \frac{1}{\beta}=\frac{\mathrm{a}}{\mathrm{c}}$
\therefore Required quardratic polynomial $=\mathrm{x}^{2}+\frac{\mathrm{b}}{\mathrm{c}} \mathrm{x}+\frac{\mathrm{a}}{\mathrm{c}}$ or $\left(\mathrm{cx}^{2}+\mathrm{bx}+\mathrm{a}\right)$

:

$$
\alpha+\beta=-\frac{b}{a}, \alpha \beta=\frac{c}{a}
$$

\qquad
\square

OR

Divide the polynomial $f(x)=3 x^{2}-x^{3}-3 x+5$ by the polynomial $g(x)=x-1-x^{2}$ and verify the division algorithm.

Ans:

$$
\text { Ans: } \begin{array}{r}
-x^{2}+x-1 \begin{array}{l}
-x^{3}+3 x^{2}-3 x+5(x-2 \\
-x^{3}+x^{2}-x \\
+\quad-\quad+
\end{array} \\
\frac{2 x^{2}-2 x+5}{2 x^{2}-2 x+2}
\end{array}
$$

Divisor \times Quotient + Remainder

$$
=\left(-x^{2}+x-1\right)(x-2)+3
$$

$$
=-x^{3}+3 x^{2}-3 x+5=\text { Dividend }
$$

28. Determine graphically the coordinates of the vertices of a triangle, the equations of whose sides are given by $2 y-x=8,5 y-x=14$ and $\mathrm{y}-2 \mathrm{x}=1$.

$2 \mathrm{y}-\mathrm{x}=8$			
x	0	2	-4
y	4	5	2
$5 y-x=14$			
x	1	6	-4
y	3	4	2

$$
y-2 x=1
$$

x	1	2	0
y	3	5	1

Drawing 3 lines

Coordinates of the vertices of the triangle are $\mathrm{A}(-4,2)$,
$\mathrm{B}(1,3)$ and $\mathrm{C}(2,5)$

OR

If 4 is the zero of the cubic polynomial $x^{3}-3 x^{2}-10 x+24$, find its other two zeroes.
Ans: $\mathrm{x}-4$ is a factor of given polynomial.

$$
x - 4 \longdiv { x / 3 - 3 x ^ { 2 } - 1 0 x + 2 4 } (x ^ { 2 } + x - 6
$$

$$
\frac{x^{3}+4 x^{2}}{x x^{2}-10 x+24}
$$

$$
\begin{aligned}
& x 2_{2}^{2}-10 x+24 \\
& -\quad+\quad+ \\
& \hline
\end{aligned}
$$

$\mathrm{x}^{2}+\mathrm{x}-6=(\mathrm{x}+3)(\mathrm{x}-2)$
\therefore Other than zeroes are -3 and 2 .
29. In a flight of 600 km , an aircraft was slowed due to bad weather. Its average speed for the trip was reduced to $200 \mathrm{~km} / \mathrm{hr}$ and time of flight increased by 30 minutes. Find the original duration of flight.

Ans: Let the speed of aircraft be $\mathrm{xkm} / \mathrm{hr}$

$$
\begin{aligned}
& \therefore \frac{600}{\mathrm{x}-200}-\frac{600}{\mathrm{x}}=\frac{30}{60} \\
& \Rightarrow \mathrm{x}^{2}-200 \mathrm{x}-240000=0 \\
& (\mathrm{x}-600)(\mathrm{x}+400)=0 \\
& \mathrm{x}=600,-400 \text { (Rejected })
\end{aligned}
$$

$$
\text { Speed of aircraft }=600 \mathrm{~km} / \mathrm{hr}
$$

$$
\therefore \text { Duration of flight }=1 \mathrm{hr}
$$

30. Find the area of triangle PQR formed by the points $\mathrm{P}(-5,7), \mathrm{Q}(-4,-5)$ and $\mathrm{R}(4,5)$.
Ans: $\quad \operatorname{ar}(\mathrm{PQR})=\frac{1}{2}[-5(-5-5)-4(5-7)+4(7+5)]$ sq. units
$=\frac{1}{2}[50+8+48]$ sq. units
$=53$ sq. units

OR

If the point $C(-1,2)$ divides internally the line segment joining $A(2,5)$ and $\mathrm{B}(\mathrm{x}, \mathrm{y})$ in the ratio $3: 4$, find the coordinates of B .
Ans: Coordinates of $\mathrm{C} \operatorname{arc}\left(\frac{3 x+8}{7}, \frac{3 y+20}{7}\right)=(-1,2)$.
$\Rightarrow \mathrm{x}=-5, \mathrm{y}=-2$
\therefore Coordinates of B are $(-5,-2)$

31. In Fig. $5, \angle \mathrm{D}=\angle \mathrm{E}$ and $\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}}$, prove that BAC is an isosceles triangle.

Ans: $\quad \angle \mathrm{D}=\angle \mathrm{E} \Rightarrow \mathrm{AE}=\mathrm{AD}$

Fig 5

$$
\begin{aligned}
& \therefore \frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}} \Rightarrow \mathrm{DB}=\mathrm{EC} \\
& \Rightarrow \mathrm{AD}+\mathrm{DB}=\mathrm{AE}+\mathrm{EC} \\
& \therefore \mathrm{AB}=\mathrm{AC}
\end{aligned}
$$

Hence $\triangle \mathrm{BAC}$ is an isosceles triangle.
32. In a triangle, if square of one side is equal to the sum of the squares of the other two sides, then prove that the angle opposite to the first side is a right angle.

Ans: For correct given, To prove, construction and figure.

For correct proof.

33. If $\sin \theta+\cos \theta=\sqrt{3}$, then prove that $\tan \theta+\cot \theta=1$.

Ans: $\sin \theta+\cos \theta=\sqrt{3} \Rightarrow(\sin \theta+\cos \theta)^{2}=(\sqrt{3})^{2}$

$$
\begin{aligned}
& \sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta=3 \Rightarrow \sin \theta \cos \theta=1 \\
& \text { L.H.S }=\tan \theta+\cot \theta=\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}=\frac{1}{\cos \theta \sin \theta}=1=\text { R.H.S }
\end{aligned}
$$

34. A cone of base radius 4 cm is divided into two parts by drawing a plane through the mid-point of its height and parallel to its base. Compare the volume of the two parts.

Ans:

$$
\begin{aligned}
& \triangle \mathrm{ABC} \sim \triangle \mathrm{ADE}, \frac{\mathrm{~h}}{2 \mathrm{~h}}=\frac{\mathrm{BC}}{4} \\
& \therefore \mathrm{BC}=2 \mathrm{~cm} \\
& \text { Ratio of volumes of two parts } \\
& =\frac{\frac{1}{3} \pi \times 2^{2} \times \mathrm{h}}{\frac{1}{3} \pi \times\left(2^{2}+4^{2}+2 \times 4\right) \times \mathrm{h}} \\
& \left.=\frac{4}{28}=\frac{1}{7} \text { or } 1: 7 \text { (accept } 7: 1 \text { also }\right)
\end{aligned}
$$

cor. fig 1/2

SECTION - D

Question numbers 35 to $\mathbf{4 0}$ carry 4 marks each.
35. Show that the square of any positive integer cannot be of form $(5 q+2)$ or $(5 q+3)$ for any integer q.
Ans: Let a be any positive integer. Take $b=5$ as the divisor.
$\therefore \mathrm{a}=5 \mathrm{~m}+\mathrm{r}, \mathrm{r}=0,1,2,3,4$
1

OR

Prove that one of every three consecutive positive integers is divisible by 3 .
Ans: Let n be any positive integer. Divide it by 3 .

$$
\therefore \quad \mathrm{n}=3 \mathrm{q}+\mathrm{r}, \mathrm{r}=0,1,2
$$

Case-1 : $\mathrm{n}=3 \mathrm{q}$ (divisible by 3)

$$
\mathrm{n}+1=3 \mathrm{q}+1, \mathrm{n}+2=3 \mathrm{q}+2
$$

Case- $2: \mathrm{n}=3 \mathrm{q}+1 \Rightarrow \mathrm{n}+1=3 \mathrm{q}+2, \mathrm{n}+2=3 \mathrm{q}+3$ (divisible by 3)
Case- $3: \mathrm{n}=3 \mathrm{q}+2 \Rightarrow \mathrm{n}+1=3 \mathrm{q}+3$ (divisible by 3), $\mathrm{n}+2=3 \mathrm{q}+4$
36. The sum of four consecutive numbers in AP is 32 and the ratio of product of the first and last terms to the product of two middle terms is $7: 15$. Find the numbers.
Ans: Let four consecutive number be $a-3 d, a-d, a+d, a+3 d$
Sum $=32 \quad \therefore 4 a=32 \Rightarrow a=8$

$$
\begin{aligned}
& \frac{(a-3 d)(a+3 d)}{(a-d)(a+d)}=\frac{7}{15} \Rightarrow 15\left(64-9 d^{2}\right)=7\left(64-d^{2}\right) \\
& \therefore d^{2}=4 \Rightarrow d= \pm 2
\end{aligned}
$$

Four numbers are 2, 6, 10, 14 .
OR
Solve: $1+4+7+10+\ldots+x=287$
Ans: $\quad x=a_{n}=1+3 n-3=3 n-2$
$\mathrm{S}_{\mathrm{n}}=287 \Rightarrow \frac{\mathrm{n}}{2}[1+3 \mathrm{n}-2]=287$
$\therefore 3 n^{2}-n-574=0$
$(\mathrm{n}-14)(3 \mathrm{n}+41)=0 \Rightarrow \mathrm{n}=14$
$\therefore x=3 n-2=40$
$1 / 2$
for each case $=2 \frac{1}{2}$ $1 / 2$
37. Draw a line segment AB of length 7 cm . Taking A as centre, draw a circle of radius 3 cm and taking B as centre, draw another circle of radius 2 cm . Construct tangents to each circle from the centre of the other circle.
Ans: Constructing the circles of radii 3 cm and 2 cm .
Constructing the tangents.
38. A vertical tower stands on a horizontal plane and is surmounted by a vertical flag-staff of height 6 m . At a point on the plane, the angle of elevation of the bottom and top of the flag-staff are 30° and 45° respectively. Find the height of the tower. (Take $\sqrt{3}=1.73$)
Ans:

$$
\begin{aligned}
& \frac{\mathrm{h}}{\mathrm{x}}=\tan 30^{\circ} \\
& \Rightarrow \mathrm{x}=\mathrm{h} \sqrt{3} \\
& \begin{aligned}
\frac{6+\mathrm{h}}{\mathrm{x}} & =\tan 45^{\circ} \Rightarrow 6+\mathrm{h}
\end{aligned} \mathrm{x} \\
& \begin{aligned}
\therefore \mathrm{h} & =\frac{6}{\sqrt{3}-1}=3(\sqrt{3}+1)
\end{aligned} \\
& =3 \times 2.73 \mathrm{~m} \\
& \\
&
\end{aligned}
$$

39. A bucket in the form of a frustum of a cone of height 30 cm with radii of its lower and upper ends as 10 cm and 20 cm respectively. Find the capacity of the bucket. Also find the total cost of milk that can completely fill the bucket at the rate of $₹ 40$ per litre. $\left(\right.$ Use $\left.\pi=\frac{22}{7}\right)$
Ans: Capacity of bucket $=\frac{1}{3} \pi \mathrm{~h}\left(\mathrm{r}_{1}^{2}+\mathrm{r}_{2}^{2}+\mathrm{r}_{1} \mathrm{r}_{2}\right)$

$$
\begin{aligned}
& =\frac{1}{3} \times \frac{22}{7} \times 30\left(10^{2}+20^{2}+10 \times 20\right) \mathrm{cm}^{3} \\
& =22000 \mathrm{~cm}^{3} \\
& =22 l
\end{aligned}
$$

$$
\text { Cost of milk }=₹ 40 \times 22=₹ 880
$$

cor. fig 1
40. The following table gives production yield per hectare (in quintals) of wheat of 100 farms of a village:

Production yield/hect.	$40-45$	$45-50$	$50-55$	$55-60$	$60-65$	$65-70$
No. of farms	4	6	16	20	30	24

Change the distribution to 'a more than' type distribution and draw its ogive.

The median of the following data is 525 . Find the values of x and y , if total frequency is 100 :

Class :	$\frac{8}{0}$	$$	$\begin{aligned} & \text { ob } \\ & \text { ò } \\ & \text { ò } \end{aligned}$	$\begin{aligned} & \text { ò } \\ & \vdots \\ & \vdots \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & \text { ò } \\ & \dot{子} \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & \vdots \\ & i \\ & i \end{aligned}$	$\begin{aligned} & \stackrel{\otimes}{\hat{1}} \\ & \stackrel{1}{\circ} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { oे } \\ & \infty \\ & \stackrel{1}{2} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { oे } \\ & \text { ò } \\ & \text { ò } \end{aligned}$	8
Frequency:	2	5	x	12	17	20	y	9	7	4

Ans:

Classes	Frequency	Cumulative frequency
$0-100$	2	2
$100-200$	5	7
$200-300$	x	$7+x$
$300-400$	12	$19+x$
$400-500$	17	$36+x$
$500-600$	20	$56+x$
$600-700$	y	$56+x+y$
$700-800$	9	$65+x+y$
$800-900$	7	$72+x+y$
$900-1000$	4	$76+x+y$
Total	100	

$76+x+y=100 \Rightarrow x+y=24 \ldots$ (i)
$500-600$ is the median class

Median $=\ell+\frac{\frac{\mathrm{n}}{2}-\mathrm{cf}}{\mathrm{f}} \times \mathrm{h}$
$\Rightarrow 525=500+\frac{50-36-\mathrm{x}}{20} \times 100$
Solving we get, $\mathrm{x}=9$
From (i), $\mathrm{y}=15$

