## **CBSE Class 10 Science Question Paper Solution 2020 Set 31/1/1**



Series: JBB/1 SET-1 Paper Code No: 31/1/1

| Series                                     | Series: JBB/1 SE1-1 Paper Code No: 31/1/1                                                                   |                             |       |  |  |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------|-------|--|--|
| MARKING SCHEME – CLASS X SCIENCE (2019-20) |                                                                                                             |                             |       |  |  |
| QUESTION PAPER CODE: SET 31/1/1            |                                                                                                             |                             |       |  |  |
| S.NO                                       | VALUE POINTS/EXPECTED ANSWER                                                                                | MARKS                       | TOTAL |  |  |
|                                            | CECTION A                                                                                                   |                             | MARKS |  |  |
| 1.                                         | SECTION A  Cyclonomican / Cyclohoveno formula on structura (on any other)                                   | 1                           | 1     |  |  |
| 1.                                         | Cyclopentene / Cyclohexene-formula or structure (or any other).  If candidate writes Benzene give full mark | 1                           | 1     |  |  |
| 2                                          |                                                                                                             | 1                           | 1     |  |  |
| 3.                                         | Electromagnetic Induction                                                                                   | 1                           | 1     |  |  |
| 3.                                         | a) Thick hair growth in armpits, genital area/thinner hair on arms, legs,                                   |                             |       |  |  |
|                                            | face/ more active oil secretion from glands on skin/Occurrence of                                           | 14 + 14                     |       |  |  |
|                                            | pimples (any two)                                                                                           | $\frac{1}{2} + \frac{1}{2}$ |       |  |  |
|                                            | b) Imbalance in male – female ratio/ decline in child sex ratio                                             | 1                           |       |  |  |
|                                            | c) Oral pills d) Rate of birth and death                                                                    | 1                           | 4     |  |  |
| 4                                          | /                                                                                                           | 1                           | 4     |  |  |
| 4.                                         | a) Human beings are at the top level in any food chain                                                      | 1                           |       |  |  |
|                                            | b) Washing of vegetables, fruits, grains thoroughly/Organic farming/                                        | 1                           |       |  |  |
|                                            | Use of bio pesticides (any one)                                                                             | l 1                         |       |  |  |
|                                            | c) (b) / Trophic level                                                                                      | 1                           | 4     |  |  |
| _                                          | d) (a) / Consumer                                                                                           | 1                           | 4     |  |  |
| 5.                                         | (d) / (A) and (B)                                                                                           |                             |       |  |  |
|                                            | OR  (A) Dealle disclaration of the Capeny APP                                                               | 1                           | 1     |  |  |
| -                                          | (d)/ Double displacement reaction                                                                           | 1                           | 1     |  |  |
| 6.                                         | (d) / (B), (C) and (D)                                                                                      | 1                           | 1     |  |  |
| 7.                                         | (c)/ Sodium hydrogen carbonate and tartaric acid                                                            | 1                           |       |  |  |
|                                            | [Note: If a candidate writes 'none of the options is correct'/ 'sodium                                      |                             | 1     |  |  |
| 0                                          | hydrogen carbonate' give full credit.]                                                                      | 1                           | 1     |  |  |
| 8.                                         | $(c) / CaSO_4.\frac{1}{2}H_2O$                                                                              | 1                           | 1     |  |  |
| 9.                                         | (d) / All reflecting surfaces                                                                               |                             |       |  |  |
|                                            | OR                                                                                                          |                             |       |  |  |
|                                            | (d) / Virtual and erect                                                                                     | 1                           | 1     |  |  |
| 10.                                        | (d) / Increases heavily                                                                                     |                             |       |  |  |
|                                            | OR                                                                                                          |                             |       |  |  |
|                                            | (d) / 1A                                                                                                    | 1                           | 1     |  |  |
| 11.                                        | (d) / Afforestation                                                                                         | 1                           | 1     |  |  |
| 12.                                        | (b) / (A) and (D)                                                                                           | 1                           | 1     |  |  |
| 13.                                        | (b) / Both (A) and (R) are true but (R) is not the correct explanation                                      | 1                           | 1     |  |  |
|                                            | of the assertion (A).                                                                                       |                             |       |  |  |
| 14.                                        | (a) / Both (A) and (R) are true and (R) is the correct explanation of                                       | 1                           | 1     |  |  |
|                                            | the assertion (A).                                                                                          |                             |       |  |  |
|                                            | SECTION B                                                                                                   |                             |       |  |  |
| 15.                                        |                                                                                                             |                             |       |  |  |
|                                            | A black colour is formed on the surface                                                                     | 1/2                         |       |  |  |
|                                            | Heat                                                                                                        |                             |       |  |  |
|                                            | $2Cu + O_2 \Longrightarrow 2CuO$                                                                            | 1/2                         |       |  |  |
|                                            | Brown Copper Oxide; Black Colour                                                                            | 1/2                         |       |  |  |
|                                            | **                                                                                                          |                             |       |  |  |
|                                            |                                                                                                             |                             |       |  |  |

| Topper's |  |
|----------|--|
|          |  |

|     | Original/brown colour                                                                | is restored.                                        | 1/2                    |   |
|-----|--------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------|---|
|     | Heat                                                                                 |                                                     |                        |   |
|     | $CuO + H_2 \longrightarrow Cu + I$                                                   |                                                     | 1/2                    | _ |
|     | Black Coppe                                                                          | er; Brown                                           | 1/2                    | 3 |
| 16. |                                                                                      |                                                     |                        |   |
|     | Products: Hydrogen, Chlori                                                           | ne , Sodium hydroxide                               | 1 ½                    |   |
|     | Uses:                                                                                |                                                     |                        |   |
|     | · · · · · · · · · · · · · · · · · · ·                                                | of margarine/ ammonia/as a fuel                     |                        |   |
|     |                                                                                      | wimming pools/ production of                        |                        |   |
|     | PVC/ Disinfectants/CFCs/Pe                                                           |                                                     |                        |   |
|     | •                                                                                    | easing metal surfaces/ in making                    |                        |   |
|     | soaps and detergents/ paper r                                                        | <u> </u>                                            | $\frac{1}{2} \times 3$ |   |
|     | <u> </u>                                                                             | y one use of these or any other)                    |                        |   |
|     | OR                                                                                   |                                                     |                        |   |
|     | By recrystallisation of sodiur                                                       |                                                     | 1                      |   |
|     | • Na <sub>2</sub> CO <sub>3</sub> + 10H <sub>2</sub> O →                             | Na <sub>2</sub> CO <sub>3</sub> .10H <sub>2</sub> O | 1                      |   |
|     | Basic Salt                                                                           |                                                     | 1/2                    |   |
|     | <ul> <li>Permanent hardness</li> </ul>                                               |                                                     | 1/2                    | 3 |
| 17. | i) By dissolving 5g of KMnO <sub>4</sub> in 10                                       | 0mL of water/                                       |                        |   |
|     | By dissolving 5g of KMnO <sub>4</sub> in wa                                          | ter to make a final volume of 100                   | 1                      |   |
|     | mL.                                                                                  |                                                     |                        |   |
|     | ii) As an oxidizing agent                                                            |                                                     | 1/2                    |   |
|     | Purple colour persists                                                               |                                                     | 1/2                    |   |
|     | Alkaline KMnO <sub>4</sub>                                                           |                                                     |                        |   |
|     | iii) CH <sub>3</sub> CH <sub>2</sub> OH → (                                          | CH₃COOH                                             | 1                      | 3 |
|     | heat                                                                                 |                                                     |                        |   |
| 18. | • The adrenaline hormone is se                                                       |                                                     | 1                      |   |
|     | <ul> <li>The heart beats faster resulting</li> </ul>                                 | ng in supply of more oxygen to the                  |                        |   |
|     | muscles.                                                                             |                                                     | 1/2                    |   |
|     | Blood is diverted to skeletal in                                                     | muscles.                                            | 1/2                    |   |
|     | • The breathing rate increases.                                                      |                                                     | 1/2                    |   |
|     | The blood supply to digestive                                                        | e systems and skin is reduced.                      | 1/2                    |   |
|     | Ol                                                                                   | R                                                   |                        |   |
|     | <ul> <li>Electrical impulses have limi</li> </ul>                                    | ted access to only those cells that                 | 1.17                   |   |
|     | are connected by nervous tiss                                                        | sue/ neurons, whereas chemical                      | 1 ½                    |   |
|     | signals can reach each and ev                                                        | very cell of the body.                              |                        |   |
|     | <ul> <li>Cells need time to reset in or</li> </ul>                                   | der to create repeated/ new                         | 1 ½                    |   |
|     | electrical impulses whereas r                                                        | no such time is required for                        | 1 72                   | 2 |
|     | chemical communication.                                                              |                                                     |                        | 3 |
| 19. | <ul> <li>Pollination is the transfer of j</li> </ul>                                 | pollen from anther to stigma                        | 1                      |   |
|     |                                                                                      |                                                     |                        |   |
|     | Self Pollination                                                                     | Cross Pollination                                   |                        |   |
|     | Transfer of pollen in the same                                                       | Transfer of pollen from one                         |                        |   |
|     | flower                                                                               | flower to another.                                  | 1                      |   |
|     |                                                                                      |                                                     |                        |   |
|     | <ul> <li>Pollination leads to fertilization resulting in the formation of</li> </ul> |                                                     |                        | - |
|     | zygote.                                                                              |                                                     | 1                      | 3 |

| FORPIER'S |   |
|-----------|---|
|           | ١ |

|     |                                                                                                                                        | _                      | , ` |
|-----|----------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----|
|     |                                                                                                                                        |                        |     |
| 20. | <ul> <li>Homologous structures are those which have similar basic<br/>structure and origin but perform different functions.</li> </ul> | 1                      |     |
|     | • Example: forelimbs of reptiles, amphibians, humans, wings of birds                                                                   | 1/2                    |     |
|     | (or any other example)                                                                                                                 |                        |     |
|     | • Yes                                                                                                                                  | 1/2                    |     |
|     | <ul> <li>Similarity in basic design of the structure indicates that their</li> </ul>                                                   |                        |     |
|     | ancestors were common.                                                                                                                 | 1                      | 3   |
| 21. | Because of scattering of light.                                                                                                        | 1                      |     |
|     | Instances:                                                                                                                             | 1                      |     |
|     | When a fine beam of light enters a smoke-filled dark room                                                                              |                        |     |
|     | through a small hole.                                                                                                                  |                        |     |
|     | When sunlight passes through a canopy of dense forest in                                                                               |                        |     |
|     | foggy/ misty conditions.                                                                                                               |                        |     |
|     | Blue colour of sky.                                                                                                                    | $\frac{1}{2} \times 4$ |     |
|     | <ul> <li>Red colour of the sun during sunrise or sunset.</li> </ul>                                                                    |                        |     |
|     | (or any other)                                                                                                                         |                        |     |
|     | OR                                                                                                                                     |                        |     |
|     | <ul> <li>Prism has 2 inclined refracting surfaces whereas a glass slab</li> </ul>                                                      |                        |     |
|     | has 2 parallel refracting surfaces.                                                                                                    | 1                      |     |
|     | TOPPER'S                                                                                                                               |                        |     |
|     | i) When monochromatic light passes through a glass slab it gets                                                                        | 1/2                    |     |
|     | displaced laterally whereas in prism it gets angularly displaced.                                                                      | 1/2                    |     |
|     | ii) When white light passes through a glass slab, it gets laterally                                                                    | 1/2                    | 2   |
|     | displaced whereas in prism, dispersion takes place.                                                                                    | 1/2                    | 3   |
|     |                                                                                                                                        |                        |     |
| 22. |                                                                                                                                        |                        |     |
|     | Sun nearly                                                                                                                             |                        |     |
|     | overhead                                                                                                                               |                        |     |
|     |                                                                                                                                        |                        |     |
|     | Blue scattered away Less blue                                                                                                          |                        |     |
|     | Sun appears reddish scattered                                                                                                          |                        |     |
|     |                                                                                                                                        |                        |     |
|     | Sun near                                                                                                                               |                        |     |
|     | horizon Observer                                                                                                                       |                        |     |
|     |                                                                                                                                        |                        |     |
|     |                                                                                                                                        |                        |     |
|     | Dia                                                                                                                                    | 1                      |     |
|     | Diagram<br>Labelling                                                                                                                   | $\frac{1}{2} \times 4$ | 3   |
|     | Labelling                                                                                                                              |                        | _   |



| 23. | $V \alpha I$ or Potential difference is directly proportional to current                                                                                                          | 1                           |   |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---|
|     | Note: If circuit diagram is correct but labelling of ammeter and voltmeter are incorrect, deduct 1 mark.                                                                          | 2                           | 3 |
| 24. | i) $H = I^2Rt$                                                                                                                                                                    | 1                           |   |
|     | ii) H = V.I.t                                                                                                                                                                     | 1                           |   |
|     | II - V.I.i   $= V.Q$                                                                                                                                                              | 1/2                         |   |
|     | Given: $V = 40 \text{ volts}$ , $Q = 96000 \text{ C}$                                                                                                                             | /2                          |   |
|     | $H = 40 \text{ V} \times 96000 \text{ C}$                                                                                                                                         | 1                           |   |
|     | $= 3.84 \times 10^6 \mathrm{J}$                                                                                                                                                   | 1/2                         | 3 |
|     | SECTION C                                                                                                                                                                         | , 2                         |   |
| 25. | These metals have more affinity for oxygen than carbon.                                                                                                                           | 1                           |   |
| 20. | <ul> <li>Towards the top of the reactivity series .</li> </ul>                                                                                                                    | 1                           |   |
|     | -                                                                                                                                                                                 | 1                           |   |
|     | By electrotytic reduction of their molten ores.  Example: Extraction of sodium from molten addium oblarida by:    Complete   Extraction of sodium from molten addium oblarida by: | •                           |   |
|     | Example: Extraction of sodium from molten sodium chloride by  aleatrolysis                                                                                                        |                             |   |
|     | electrolysis. Process:                                                                                                                                                            |                             |   |
|     |                                                                                                                                                                                   |                             |   |
|     | Molten NaCl is taken in an electrolytic cell and on passing electricity. No is deposited at authods and ablaring is liberated at                                                  | 1                           |   |
|     | electricity Na is deposited at cathode and chlorine is liberated at anode.                                                                                                        |                             |   |
|     | Reactions –                                                                                                                                                                       |                             |   |
|     | At cathode - $Na^+ + e^- \rightarrow Na$                                                                                                                                          | 1/2                         |   |
|     | At anode - $2Cl^{-}$ $\rightarrow$ $Cl_2 + 2e^{-}$                                                                                                                                | 1/2                         |   |
|     | ( or any other example)                                                                                                                                                           |                             | 5 |
| 26  | i) E, it has 4 valence electrons.                                                                                                                                                 | 1/2 + 1/2                   |   |
| _0  | ii) B, it needs only 2 electrons to attain stable configuration.                                                                                                                  | $\frac{1}{2} + \frac{1}{2}$ |   |
|     | iii) D, it loses two electrons to attain stable configuration.                                                                                                                    | $\frac{1}{2} + \frac{1}{2}$ |   |
|     | iv) F, it has the largest size since size increases down the group.                                                                                                               | $\frac{1}{2} + \frac{1}{2}$ |   |
|     | v) Noble gases, outermost shell is complete.                                                                                                                                      | $\frac{1}{2} + \frac{1}{2}$ |   |
|     | OR                                                                                                                                                                                | , -                         |   |
|     | Atomic size is the distance between the centre of the nucleus and                                                                                                                 | 1                           |   |
|     | the outermost shell of an isolated atom.                                                                                                                                          |                             |   |
|     | Picometer /pm                                                                                                                                                                     | 1                           |   |
|     | Trends in Atomic radius                                                                                                                                                           |                             |   |
|     | In a group: increases down the group;                                                                                                                                             | 1/2                         |   |
|     | due to addition of a new shell.                                                                                                                                                   | 1                           |   |
|     |                                                                                                                                                                                   |                             |   |
|     |                                                                                                                                                                                   |                             |   |
|     |                                                                                                                                                                                   |                             |   |

| ROPPER'S |
|----------|
|          |

|        | In a period: atomic radius decreases from left to right;                                                                                                                                                                                                                                                                                                                                                                                                                     | 1/2                                    |   |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---|
|        | due to increase in pulling power of nucleus /                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                      |   |
|        | due to addition of electrons in the same shell.                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        | 5 |
| 27     | <ul><li>a) Rate of breathing is faster in aquatic organisms because the amount of dissolved oxygen in water is lower as compared to the amount of oxygen in air.</li><li>b)</li></ul>                                                                                                                                                                                                                                                                                        | 1/2                                    |   |
|        | Pharynx  Trachea  Lung  Diaphragm                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |   |
|        | Diagram A CADEMYA 5 labellings                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1<br>½ x 5                             |   |
|        | OR a) A pair of kidneys, a pair of ureters, a urinary bladder and a urethra.                                                                                                                                                                                                                                                                                                                                                                                                 | ½ x 4                                  |   |
|        | b) A kidney has a large number of filteration units called nephrons. Each nephron has cup shaped Bowman's capsule containing a bunch of capillaries called glomerulus. Blood gets filtered in the glomerulus. Filterate gets collected in Bowman's capsule. Some useful substances such as glucose, amino acids, salts and water are selectively reabsorbed as urine flows through nephron tube. The urine formed in each kidney is eventually stored in the urinary bladder | 1/2<br>1/2<br>1/2<br>1/2<br>1/2<br>1/2 | 5 |
| 28     | a) Law of dominance of traits: -In a cross between a pair of contrasting characters, only one parental character will be expressed in F <sub>1</sub> generation which is called dominant trait and the other is called recessive trait.                                                                                                                                                                                                                                      | 1                                      |   |
|        | For example – in pea plants,  Tall Dwarf /Short  Parents TT tt  Gametes                                                                                                                                                                                                                                                                                                                                                                                                      | 1/2                                    |   |
|        | F <sub>1</sub> All Tall                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1/2                                    |   |
| 21/1/1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |   |



|    | All plants in F1 generation were tall proving that the gene for tallness is dominant over the gene for dwarfness/ short, which is not able to express itself in the presence of dominant trait.  (any other example)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                             |   |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---|
|    | b) Traits acquired by an organism during its lifetime are known as aquired traits.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                             |   |
|    | These traits are not inherited because they occur in somatic cells only/do not cause any change in the DNA of the germ cells.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                             | 5 |
| 29 | i) $ \begin{array}{ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                             |   |
|    | iii) $(a) \qquad (a) \qquad (a) \qquad (a) \qquad (a) \qquad (b) \qquad (b) \qquad (c) \qquad$ | 1                             |   |
|    | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                             |   |
|    | In case (i) sign is positive and m> 1 (ii) sign is positive and m < 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\frac{1/2 + 1/2}{1/2 + 1/2}$ |   |
|    | OR<br>Given $h = +4.0 \text{ cm}, u = -25.0 \text{ cm}, f = -15.0 \text{ cm}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1/2                           |   |
|    | i) image distance $v = ?$ ; mirror formula : $\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$<br>or $\frac{1}{v} = \frac{1}{f} - \frac{1}{u}$ ; $= -\frac{1}{15} - (-\frac{1}{25})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1/2                           |   |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                             |   |



|    |                                                                                                                                                                                                                                                         | 1          |   |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---|
|    | $= \frac{-1}{15} + \frac{1}{25} = \frac{-5+3}{75}$ $= \frac{-2}{75}$ $v = -37.5 \text{ cm}$ The screen should be placed 37.5 cm in front of the mirror.                                                                                                 | 1/2        |   |
|    | ii) $m = \frac{h^1}{h} = -\frac{v}{u}$                                                                                                                                                                                                                  | 1/2        |   |
|    | $h^1 = -\frac{v}{u} \cdot h$                                                                                                                                                                                                                            | 1/2        |   |
|    | $= -\frac{(-37.5 \times 4)}{-25}$ $h^{1} = -6.0 \text{ cm (size of the image)}.$                                                                                                                                                                        | 1/2        |   |
|    | iii)  M E D P                                                                                                                                                                                                                                           | 1          |   |
|    | Note: Deduct half mark for not showing arrows in ray diagrams.                                                                                                                                                                                          |            | 5 |
| 30 | a) A current carrying solenoid is called an electromageet /when soft iron is placed inside a solenoid carrying current, the soft iron piece behaves like a magnet so long as electric current passes through it. The magnet so formed is electromagnet. | 1          |   |
|    | Uses: In electric motors, electric bells, (or any other)                                                                                                                                                                                                | 1/2 + 1/2  |   |
|    | b)                                                                                                                                                                                                                                                      | 1          |   |
|    | (Direction of current)                                                                                                                                                                                                                                  | 1          |   |
|    | (Direction of current) c) Soft iron core is used to increase the strength/power of the electro magnet.                                                                                                                                                  | 1/2<br>1/2 |   |
|    | d) i) By increasing the current ii) By increasing the number of turns in the coil.                                                                                                                                                                      | 1/2 + 1/2  | 5 |