CBSE Class 10 Science Solution PDF

SUMMATIVE ASSESSMENT - II

Code No. 31/1
MARKING SCHEME - SCIENCE (DELHI)
SECTION - A

$31 / 1$	Expected Answer / Value point	
Q1.	Seven	
Q2.	Reproduction	
Q3.	1000 J	
Q4.	i) Here $n_{w}=\frac{4}{3} ;$	$n_{g}=\frac{3}{2} ; \quad v_{g}=2 \times 10^{8} \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
& n_{g}=\frac{c}{v_{g}} \\
& \therefore c=n_{g} v_{g}=\frac{3}{2} \times 2 \times 10^{8} \mathrm{~m} / \mathrm{s}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

ii) $n_{w}=\frac{c}{v_{w}}$
$\therefore v_{w}=\frac{c}{n_{w}}=\frac{3 \times 3 \times 10^{8}}{4}=2.25 \times 10^{8} \mathrm{~m} / \mathrm{s}$

Q6.

Causes: Disposal of industrial effluents
Human activities like bathing, washing, immersion of ashes, etc.
Disposal of untreated sewage
(anytwo)

Harmful effects on health - Spreads water borne diseases,

- Consumptions of contaminated fishes
(or any other relevant affect)

Biodiversity - Number and range of variety of species of life forms in an area.

Effect - Loss of diversity may lead to a loss of ecological stability.
Cade

| $31 / 1$ | Expected Answer / Value point | Marks Total |
| :--- | :--- | :--- | :--- |

Q7.

- Test 1 (Litmus Test)

Take two strips of blue litmus paper. Place a drop each of the alcohol and carboxylic acid on these strips separately. The blue litmus paper turns red in the case of carboxylic acid and remains unaffected in the case of alcohol.

- Test 2 (Sodium hydrogen carbonate test / sodium carbonate test)

A pinch of sodium hydrogen carbonate or sodium carbonate is added to both separately. Ifbrisk effervescence with the evolution of a colorless gas is observed, it indicates the presence of carboxylic acid.

If no change is observed, then it confirms the presence of alcohol.

- Test 3 - Ester test or any other suitable test
(anytwo)
$\mathrm{H}: \mathrm{C}: \mathrm{C}: \mathrm{H}$

In pure oxygen, ethyne undergoes complete combustion and hence high temperature, suitable for welding, is attained.

Whereas air contains less percentage /amount of oxygen which results in incomplete combustion of ethyne and the temperature required for welding is not attained.

 part which dissolves in oil.

\begin{tabular}{|c|c|c|c|}
\hline 31/1 \& Expected Answer / Value point \& Marks \& Tota \\
\hline \& \begin{tabular}{l}
- Thus soap molecules arrange themselves in the form of a micelle/diagram of a micelle. \\
On rinsing with water, soap is washed off, lifting the oily dirt particles with it. Soap does not form lather in hard water, because of the reaction of soap with Ca and Mg ions present in hard water, and forms insoluble precipitate / scum. \\
Problems due to the use of detergents are: \\
- Detergents are non-biodegradable. \\
- It leads to water or soil pollution. \\
- It can also cause skin problems.
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\)
1

$11 / 2 \times 2$ \& 5

\hline Q20. \& | a) Testis - secrete male hormone - testosterone |
| :--- |
| Functions- |
| i) Formation of sperms, |
| ii) Development of secondary sexual characters. |
| b) i) Fallopian tube / /oviduct. |
| ii) Uterus. |
| - Placenta is a special disc like tissue embedded in the mother's uterine wall and connected to the foetus / embryo. |
| - Placenta provides a large surface area for glucose and oxygen/nutrients to pass from the mother's blood to the embryo/ foetus. | \& 1

$11 / 2 \times 2$
$11 / 2 \times 2$

1
1 \&

\hline Q21. \& | a) When Mendel cross pollinated pure tall pea plants with pure dwarf pea plants, only tall plants were obtained in F1 generation. On self pollinating the F1 progeny, both tall and dwarf plants appeared in F 2 generation in the ratio 3:1 |
| :--- |
| Appearance of tall character in both the F1 and F2 progenies shows that tallness is a dominant character. The absence ofdwarfcharacter in F 1 generation and its reappearance in F 2 shows dwarfness is the recessive character. | \& 1 \&

\hline
\end{tabular}

$31 / 1$	Expected Answer / Value point
	b) When Mendel conducted a dihybrid cross having two sets of characters,

The appearance of new recombinants in the F2 generation along with parental type shows that traits are inherited independently.

Or

Flow chart with explanation.

- Power of lens:- Ability of a lens to converge or diverge the light rays falling on it / The degree of convergence or divergence of light rays achieved by a lens / Reciprocal of focal length of the lens.
- $\quad 1$ dioptre - It is the power of a lens whose focal length is 1 metre.
- $f_{A}=+10 \mathrm{~cm}=0.1 \mathrm{~m}$

Converging/ Convex lens
$P_{\mathrm{A}}=\frac{1}{f_{\mathrm{A}}}=\frac{1}{+0.1 \mathrm{~m}}=+10 \mathrm{D}$
$f_{B}=-10 \mathrm{~cm}=-0.1 \mathrm{~m}$
Diverging/ Concave lens

$$
P_{\mathrm{B}}=\frac{1}{f_{\mathrm{B}}}=\frac{1}{-0.1 \mathrm{~m}}=-10 \mathrm{D}
$$

- In this case the object distance is 8 cm which is less than the focal length, the object will be in between the optical centre and principal focus of the lens. Hence, the convex lens, i.e., lens A will form virtual and magnified image of the object.

\begin{tabular}{|c|c|c|c|}
\hline 31/1 \& Expected Answer / Value point \& Marks \& Total \\
\hline \& \& 1 \& 5 \\
\hline \multirow[t]{6}{*}{Q23.} \& - Yes \& 1/2 \& \\
\hline \& \begin{tabular}{l}
(Note: Image must be between \(\mathrm{F}_{2}\) and \(2 \mathrm{~F}_{2}\)) \\
- \(\quad h=4 \mathrm{~cm} \quad f=+20 \mathrm{~cm} \quad u=-15 \mathrm{~cm} \quad v=\) ? \(\quad h^{\prime}=\) ?
\end{tabular} \& 11/2 \& \\
\hline \& \[
\begin{aligned}
\& \frac{1}{f}=\frac{1}{v}-\frac{1}{u} \\
\& \therefore \frac{1}{v}=\frac{1}{f}+\frac{1}{u}=\frac{1}{(+20)}+\frac{1}{(-15)}=\frac{3-4}{60}=\frac{-1}{60} \\
\& \therefore v=-60 \mathrm{~cm}
\end{aligned}
\] \& \(1 / 2\)

1 \&

\hline \& Nature - Virtual, erect \& 1/2 \&

\hline \& $$
h^{\prime}=\frac{v}{u} \times h=\frac{-60 \mathrm{~cm}}{-15 \mathrm{~cm}} \times(+4 \mathrm{~cm})=+16 \mathrm{~cm}
$$ \& 1 \& 5

\hline \& Note: Problem can be solved through ray diagram also. \& \&

\hline \multirow[t]{3}{*}{Q24.} \& - Ciliary muscles modify the curvature of the eye lens to enable the eye to focus objects at varying distances/ help in adjusting the focal length of the eye lens \& 1 \&

\hline \& - Presbyopia \& 1/2 \&

\hline \& - Bifocal lens \& 1/2 \&

\hline
\end{tabular}

